Project description:Testis-specific transcript 10 (Tex10) is highly expressed in the testis, embryonic stem cells (ESCs), and primordial germ cells (PGCs). We previously generated a Tex10 knockout mouse model demonstrating its critical roles in ESC pluripotency and preimplantation development. Here, using conditional knockout mice and dTAG-degron ESCs, we show Tex10 is required for spermatogenesis and ESC-to-PGCLC differentiation. Specifically, Tex10-null spermatocytes arrest at metaphase I, compromising round spermatid formation. Tex10 depletion and overexpression compromise and enhance ESC-to-PGCLC differentiation, respectively. Mechanistically, bulk and single-cell RNA sequencing reveals that Tex10 depletion downregulates genes involved in pluripotency, PGC development, and spermatogenesis while upregulating genes promoting somatic programs. Chromatin occupancy study reveals that Tex10 binds to H3K4me3-marked promoters of Psmd3 and Psmd7, negative regulators of Wnt signaling, and activates their expression, thereby restraining Wnt signaling. Our study identifies Tex10 as a previously unappreciated factor in spermatogenesis and PGC development, offering potential therapeutic insights for treating male infertility.
Project description:Testis-specific transcript 10 (Tex10) is highly expressed in the testis, embryonic stem cells (ESCs), and primordial germ cells (PGCs). We previously generated a Tex10 knockout mouse model demonstrating its critical roles in ESC pluripotency and preimplantation development. Here, using conditional knockout mice and dTAG-degron ESCs, we show Tex10 is required for spermatogenesis and ESC-to-PGCLC differentiation. Specifically, Tex10-null spermatocytes arrest at metaphase I, compromising round spermatid formation. Tex10 depletion and overexpression compromise and enhance ESC-to-PGCLC differentiation, respectively. Mechanistically, bulk and single-cell RNA sequencing reveals that Tex10 depletion downregulates genes involved in pluripotency, PGC development, and spermatogenesis while upregulating genes promoting somatic programs. Chromatin occupancy study reveals that Tex10 binds to H3K4me3-marked promoters of Psmd3 and Psmd7, negative regulators of Wnt signaling, and activates their expression, thereby restraining Wnt signaling. Our study identifies Tex10 as a previously unappreciated factor in spermatogenesis and PGC development, offering potential therapeutic insights for treating male infertility.
Project description:Stem cell differentiation is known to involve changes in RNA expression, but little is known about translational control during differentiation. We comprehensively profiled gene expression during differentiation of embryonic stem cells (ESCs) into embyroid bodies (EBs) by integrating conventional transcriptome analysis with global assessment of ribosome loading. Differentiation was accompanied by an anabolic switch, characterized by global increases in transcript abundance, polysome content, protein synthesis rates and protein content. Furthermore, 78% of expressed transcripts showed increased ribosome loading, thereby enhancing translational efficiency. Elevated protein synthesis was accompanied by enhanced phosphorylation of eIF-4E binding protein, suggesting regulation by the mTOR pathway. Some transcripts were under exclusive translational control, including Activated Transcription Factor 5 (ATF5) a b-zip transcription factor, Deleted in Colon Cancer (DCC) the tumor suppressor and Wnt1, the beta-catenin agonist. Parsimonious translation in ESCs may provide a layer of quality control to prevent inappropriate gene expression in the pluripotent state. Experiment Overall Design: Embryonic stem cells (ESC) maintained in an undifferentiated state and day-5 Embryoid bodies (EB) were selected for RNA was extraction and hybridization on Affymetrix 430_2 mouse expression arrays. For polysome fractionation, twelve fractions collected from the gradients were combined to form four pools. One ml of each pool (Pools: 1-4) was used for RNA isolation, labeling and hybridization for undifferentiated ESCs (UD1, UD2, UD3 and UD4) and EBs (EB1, EB2, EB3 and EB4). In parallel, total RNA was also isolated from unfractionated lysates for transcript abundance analysis. Three biological replicates of ESCs and EB cultures were used for polysome fractionation and total RNA analysis.
Project description:Smad2, Smad3, Smad4 and Foxh1 ChIPseq performed in pluripotent mESC and embryonic bodies (EBs). RNAseq were performed in WT mESCs and Ebs of WT, Smad2KO, Smad3KO and Smad2/3DKO.
Project description:To unravel the molecular mechanism by which HOXB4 promotes the expansion of early hematopoietic progenitors within differentiating ES cells, we analzed the gene expression profiles of embryoid bodies (EBs) in which transcription of HOXB4 had been induced or not induced. A substantial number of the identified HOXB4 target genes are involved in signaling pathways important for controlling self-renewal, maintenance and differentiation of stem cells. Furthermore, we demonstrate that HOXB4 activity and FGF-signaling are intertwined. HOXB4-mediated expansion of ES cell-derived early progenitors was enhanced by specific and complete inhibition of FGF-receptors. In contrast, the expanding activity of HOXB4 on hematopoietic progenitors in day4-6 embryoid bodies was blunted in the presence of basic FGF (FGF2) indicating a dominant negative effect of FGF-signaling on the earliest hematopoietic cells. Taken together, we show that modulation of FGF signaling is an essential feature of HOXB4 activity in the context of embryonic hematopoiesis. Keywords: plus/minus induction of HOXB4 gene expression by treatment with doxycycline (Dox)
Project description:Testis-specific transcript 10 (Tex10) is highly expressed in the testis, embryonic stem cells (ESCs), and primordial germ cells (PGCs). We previously generated a Tex10 knockout mouse model demonstrating its critical roles in ESC pluripotency and preimplantation development. Here, using conditional knockout mice and dTAG-degron ESCs, we show Tex10 is required for spermatogenesis and ESC-to-PGCLC differentiation. Specifically, Tex10-null spermatocytes arrest at metaphase I, compromising round spermatid formation. Tex10 depletion and overexpression compromise and enhance ESC-to-PGCLC differentiation, respectively. Mechanistically, bulk and single-cell RNA sequencing reveals that Tex10 depletion downregulates genes involved in pluripotency, PGC development, and spermatogenesis while upregulating genes promoting somatic programs. Chromatin occupancy study reveals that Tex10 binds to H3K4me3-marked promoters of Psmd3 and Psmd7, negative regulators of Wnt signaling, and activates their expression, thereby restraining Wnt signaling. Our study identifies Tex10 as a previously unappreciated factor in spermatogenesis and PGC development, offering potential therapeutic insights for treating male infertility.
Project description:ES cell lines were established from mouse embryos, which were homozygous for the Trim33-flox allele and carried the UbcCreERT2 transgene. Cells were cultured without feeder cells in the presence of LIF and 2i. Embryoid bodies (EBs) were generated using the ATCC protocol on low attachment dishes under differentiating conditions. EBs were induced with Tamoxifen at day 1 and harvested at days 2 and 2.5, respectively.
Project description:Prior studies indicated that high concentrations of monothioglycerol (MTG), a thio-containing compound, is necessary to promote the survival or differentiation of insulin 1 expressing cells from murine ES-derived embryonic bodies (EBs). In this experiment, we tested the hypothesis that human ES cell-derived EBs, when cultured in the presence of high concentrations of MTG could preferentially differentiate to definitive endoderm, compared to those cultured in the presence of low concentrations of MTG. In addition, we wish to establish that the EBs cultured from the high MTG group is effectively committed to all 3 germ layers, compared to the undifferentiated ES cells. Thus, 3 groups of samples were submitted for micro-array analyses. Each group has 4 biological replicates.
Project description:To identify potential Elongin A targets during neuronal differentiation of ES cells, a cDNA microarray analysis comparing embryoid bodies (EBs) derived from Elongin A+/+ ES cells and Elongin A-/- ES cells was performed.