Project description:Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it is unknown whether similar variation occurs across pastoral agricultural systems. We examined soil microbial community properties known to be associated with disease suppression across 50 pastoral fields varying in management intensity. The composition and abundance of the disease-suppressive community were assessed from both taxonomic and functional perspectives.
2018-03-30 | GSE112489 | GEO
Project description:High-throughput sequencing of soil microorganisms
| PRJNA792842 | ENA
Project description:High-throughput sequencing of soil microorganisms
| PRJNA646314 | ENA
Project description:High throughput sequencing of microorganisms in soil containing oxytetracycline
| PRJNA853563 | ENA
Project description:High throughput sequencing of microorganisms in tobacco rhizosphere soil
| PRJNA831376 | ENA
Project description:High-throughput sequencing of soil microorganisms in invasive plants.
Project description:Soil microorganisms carry out decomposition of complex organic carbon molecules, such as chitin. High diversity of the soil microbiome and complexity of the soil habitat has posed a challenge to elucidate specific interactions between soil microorganisms. Here, we overcame this challenge by studying a model soil consortium (MSC-2) that is composed of 8 species. The MSC-2 isolates were originally obtained from the same soil that was enriched with chitin as a substrate. Our aim was to elucidate specific roles of the 8 member species during chitin metabolism in soil. The 8 species were added to sterile soil with chitin and incubated for 3 months. Multi-omics was used to understand how the community composition, transcript and protein expression and chitin-related metabolites shifted during the incubation period. The data clearly and consistently revealed a temporal shift during chitin decomposition and defined contributions by individual species. A Streptomyces species was a key player in early steps of chitin decomposition, followed by other members of MSC-2. These results illustrate how multi-omics applied to a defined consortium untangles complex interactions between soil microorganisms.
Project description:Korean ginseng (Panax ginseng Meyer) has long been cultivated as an important medicinal plant. Drought results from the moderate water loss, which primarily impairs the growth of ginseng and reduction of yield loss. However, basis of biological clues to understanding the accurate mechanisms related to drought stress in proteome level are still elusive. Therefore, we carried out label-free quantitative proteomic analysis using ginseng roots subjected to drought stress which was grown at less than 10% soil moisture for two weeks, compared with normal ginseng which was grown at 25% soil moisture. The acquired proteins were carried out label-free proteomic analysis using LC-MS/MS. This approach led to the identification of total 2,471 proteins, and out of 195 proteins showed significant modulation. Functional classification revealed that proteins related to secondary metabolites, calcium signaling, and photosynthesis were enriched in control sample (cluster_1), while proteins associated with stress responsive, redox, electron transport, and protein synthesis were mainly dominated in cluster_2 (drought stress condition). Taken together, our results provided an overview of the drought-induced proteomic changes in ginseng root, and it is correlated with physiological changes, contributing to reveal potential marker at proteome level in ginseng.