Project description:BmN4 cells are cultured cells derived from Bombyx mori ovaries and widely used to study transposon silencing by PIWI-interacting RNAs (piRNAs). A high-accurate genome sequence of BmN4 cells is required to analyze the piRNA pathway using RNA-seq. The genome sequence of BmN4 cells was assembled using Pacific Biosciences (PacBio) HiFi and Oxford Nanopore technology Ultralong (ONT-UL) reads. Microscopic observation and image analysis showed that BmN4 cells were octoploid on average, and the number of chromosomes per cell was highly variable. We concluded the haplotype-resolved assembly of such a complex genome would be difficult; therefore, we assembled a consensus genome sequence. RNA-seq analysis of Siwi knockdown cells also revealed that Siwi-piRISC may target Countdown (Cd), an LTR retrotransposon. By comparing the consensus genome sequence with the reads, we identified differences between haplotypes, particulary structural variants, suggesting that some transposons, including Countdown, increased their copy number in BmN4 cells.
Project description:Transcriptional profiling of silkworm BmN4-SID1 cells comparing the test of BmSoxE knockdown with the control of EGFP Knockdown. Two-condition experiment, BmSoxE knockdown vs EGFP Knockdown. Biological replicates: 3. One replicate per array.
Project description:RNAs associating with PIWI proteins were Immunoisolated from BmN4 cells. Sequence libraries were generated with NEBNext Small RNA Library Prep Set for Illumina(NEB). Libraries were sequenced using Illumina MiSeq (single-end, 51 cycles).
Project description:Human utilization of the mulberry-silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species (Morus notabilis C. K. Schneider). In the 330 Mb genome assembly of M. notabilis, we identified 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which were supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating its spread to Europe, Africa, and America. It is among few eudicots but several Rosales not preserving genome duplications in more than 100 million years – however neopolyploid series in mulberry and several others suggest that new duplications may confer benefits. Strikingly, five predicted mulberry miRNAs were found in the hemolymph and silkglands of silkworm, suggesting profound molecular level interactions that promise to expand knowledge of plant-herbivore relationship which constitute key elements of most terrestrial habitats. In addition, we investigated the characters of hemolymph small RNA. small mRNA profiles of silkworm hemolymph in the fifth instar day-5 silkworm were generated by deep sequencing, in twice, using Illumina Hiseq 2000.
Project description:RNAs associating with PIWI proteins were Immunoisolated from BmN4 cells. Sequence libraries were generated with NEBNext Small RNA Library Prep Set for Illumina(NEB). Libraries were sequenced using Illumina MiSeq (single-end, 51 cycles).
Project description:Human utilization of the mulberry-silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species (Morus notabilis C. K. Schneider). In the 330 Mb genome assembly of M. notabilis, we identified 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which were supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating its spread to Europe, Africa, and America. It is among few eudicots but several Rosales not preserving genome duplications in more than 100 million years – however neopolyploid series in mulberry and several others suggest that new duplications may confer benefits. Strikingly, five predicted mulberry miRNAs were found in the hemolymph and silkglands of silkworm, suggesting profound molecular level interactions that promise to expand knowledge of plant-herbivore relationship which constitute key elements of most terrestrial habitats. In addition, we investigated the characters of hemolymph small RNA.