Project description:This study provides a clear and accurate dynamic transcriptome profile of mRNAs in rumen, reticulum, omasum and abomasum of yaks. The results include high-quality genomic data and help to elucidate the important roles of these mRNAs in regulation of growth, development and metabolism in yaks, and to further understand the molecular mechanisms underlying metabolic regulation of yak stomach tissues. At the same time, it provided a theoretical basis for age-appropriate weaning and supplementary feeding in yaks.
Project description:Deep sequencing of mRNA from 6 organs of yak (Bos grunniens) Analysis of ploy(A)+ RNA of brain,heart,liver,lung,spleen, and stomach of yak (Bos grunniens)
Project description:Rumen epithelium plays a central role in absorbing, transporting, and metabolizing of short-chain fatty acids. For diary calve, the growth of rumen papillae greatly enhances the rumen surface area to absorb nutrients. However, the molecular mechanism underlying diary calve rumen postnatal development remains rarely understood. Here, we firstly performed a shotgun approach and bioinformatics analyses were used to investigate and compare proteomic profiles of Holstein calve rumen epithelium on day 0, 30, 60 and 90 of age. Then,a total of 4372 proteins were identified, in which we found 852, 342, 164 and 95 differentially expressed proteins (DEPs) between D0 and D30, between D30 and D60, between D60 and D90, respectively. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to provide a comprehensive proteomic landscape of diary calve rumen development at tissue level.To conclude, our data indicated that keratinocyte differentiation, mitochondrion formation, the establishment of urea transport and innate immune system play central roles during rumen epithelium development. BH4 presents an important role in rumen epithelial keratinization. The biological processes of BH4 biosynthesis and molecular function of NADP binding participate in mitochondrial cristae formation. The proposed datasets provide a useful basis for future studies to better comprehend diary calve rumen epithelial development.