Project description:This study aimed to characterise the transcriptomic response of the lactate-utilizing bacteria, Coprococcus catus and Anaerobutyricum soehngenii, grown on varying carbon sources. This work has allowed for identification of divergent gene clusters in each species contributing to the lactate utilisation pathway.
Project description:This randomized, double-blind, placebo-controlled trial investigated the impact of 14-day Anaerobutyricum soehngenii L2-7 supplementation on postprandial glucose levels in 25 White Dutch males with type 2 diabetes (T2D) on stable metformin therapy. The primary endpoint was the effect of A. soehngenii versus placebo on glucose excursions and variability as determined by continuous glucose monitoring. Secondary endpoints were changes in ambulatory 24-h blood pressure, incretins, circulating metabolites and excursions of plasma short-chain fatty acids (SCFAs) and bile acids upon a standardized meal. Results showed that A. soehngenii supplementation for 14 days significantly improved glycemic variability and mean arterial blood pressure, without notable changes in SCFAs, bile acids, incretin levels, or anthropometric parameters as compared to placebo-treated controls. Although well-tolerated and effective in improving glycemic control in the intervention group, further research in larger and more diverse populations is needed to generalize these findings.
Project description:Dysbiosis of the intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We performed a phase I/II dose-finding and safety study on the effect of oral intake of the anaerobic butyrogenic strain Anaerobutyricum soehngenii on glucose metabolism in 24 subjects with metabolic syndrome. We found that treatment with A. soehngenii was safe and observed a significant correlation between the measured fecal abundance of administered A. soehngenii and improvement in peripheral insulin sensitivity after 4 weeks of treatment. This was accompanied by an altered microbiota composition and a change in bile acid metabolism. Finally, we show that metabolic response upon administration of A. soehngenii (defined as improved insulin sensitivity 4 weeks after A. soehngenii intake) is dependent on microbiota composition at baseline. These data in humans are promising, but additional studies are needed to reproduce our findings and to investigate long-term effects, as well as other modes of delivery.
Project description:To profile genome-wide allele-specific expression in an unbiased manner we designed a high-resolution yeast tiling microarray that covers the genomes of both the laboratory strain S288c and the recently sequenced clinical isolate YJM789. This array design allows simultaneous expression profiling of allelic variants in a heterozygous hybrid strain. We hybridized cDNA from the heterozygous Y/S and from the homozygous S and Y strains grown in rich medium (YPD). Strand specificity during sample preparation was maintained by inclusion of actinomycin D during reverse transcription to prevent spurious synthesis of second strand cDNA.
Project description:Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a growing health problem for which no therapy exists to date. The modulation of the gut microbiome may have treatment potential for MASLD. Here, we investigated Anaerobutyricum soehngenii, a butyrate-producing anaerobic bacterium with beneficial effects in metabolic syndrome, in a diet-induced MASLD mouse model. Male C57BL/6J mice received a Western-type high-fat diet and water with 15% fructose (WDF) to induce MASLD and were gavaged with A. soehngenii (108 or 109 colony-forming units (CFU) 3 times per week) or a placebo for 6 weeks. The A. soehngenii gavage increased the cecal butyrate concentrations. Although there was no effect on histological MASLD scores, A. soehngenii improved the glycemic response to insulin. In the liver, the WDF-associated altered expression of three genes relevant to the MASLD pathophysiology was reversed upon treatment with A. soehngenii: Lipin-1 (Lpin1), insulin-like growth factor binding protein 1 (Igfbp1) and Interleukin 1 Receptor Type 1 (Il1r1). A. soehngenii administration also increased the intestinal expression of gluconeogenesis and fructolysis genes. Although these effects did not translate into significant histological improvements in MASLD, these results provide a basis for combined gut microbial approaches to induce histological improvements in MASLD.
Project description:A new haloalkaliphilic species of Wenzhouxiangella, strain AB-CW3 was isolated from a system of alkaline soda lakes in the Kulunda Steppe. Its complete, circular genome was assembled from combined nanopore and illumina sequencing and its proteome was determined for three different experimental conditions: growth on Staphylococcus cells, casein, or peptone. AB-CW3 is an aerobic bacterium feeding mainly on proteins and peptides.