Project description:The acute phase response (APR) is a set of metabolic and physiological reactions occurring in the host in response to tissue infection or injury and is a crucial component of the larger innate immune response. The APR is best characterized by dramatic changes in the concentration of a group of plasma proteins known as acute phase proteins (APP) which are synthesized in the liver and which function in a wide range of immunity-related activities. Utilizing a second generation high-density in situ oligonucleotide microarray for catfish, we have surveyed for the first time the APR in channel catfish liver following infection with Edwardsiella ictaluri, a fast-acting bacterial pathogen that causes enteric septicemia of catfish. Our catfish microarray design (28K) builds upon a previous 19K channel catfish array by adding recently sequenced immune transcripts from channel catfish along with 7159 unique sequences from closely-related blue catfish. Analysis of microarray results using a traditional two-fold change in gene expression cutoff and a 10% false discovery rate revealed a well-developed APR in catfish, with particularly high up-regulation (>50-fold) of genes involved in iron homeostasis (i.e. intelectin, hemopexin, haptoglobin, ferritin, and transferrin). Other classical APP upregulated greater than two-fold included coagulation factors, proteinase inhibitors, transport proteins, and complement components. Up-regulation of the majority of the complement cascade including the membrane attack complex components and complement inhibitors was observed. A number of pathogen recognition receptors (PRRs) and chemokines were also differentially expressed in the liver following infection. Validation with real-time PCR confirmed microarray results. Keywords: Disease state analysis
Project description:This study examined differentially expressed (DE) gene transcripts and regulated pathways of two geographically distinct channel catfish (Ictalurus punctatus) strains and one hybrid catfish (I. punctatus x [blue catfish] I. furcatus) strain to test whether one particular catfish type handled thermal stress better. Following a six-week growth experiment, where fish were subjected to daily cycling temperatures of either 27-31M-BM-0C or 32-36M-BM-0C, mimicking pond fluctuations. We sequenced 18 cDNA libraries of liver samples to obtain 61 million reads per library. There were 5,443 DE transcripts and 41,689 regulated pathways. Northern channel catfish had the highest amount of DE transcripts (48.6%), 5 times that of southern channel catfish, and the greatest amount of transcripts with fold changes M-bM-^IM-% 2. The overall amount of temperature-induced DE transcripts between southern hybrid and southern channel catfish was fairly comparable in relation to that of northern channel catfish, however, there were more transcripts up- or downregulated with M-bM-^IM-% 2 fold changes in channel catfish strains compared to the southern hybrid catfish. Results from this study strongly suggest genetic differences between geographic catfish types affect physiological responses to thermal stress. Furthermore, a number of genes were linked to thermal stress tolerance, which may be beneficial for understanding geographic differences in thermal stress tolerance in ectotherms and for strain development of catfish. Hepatic mRNA profiles of three fingerling catfish types following a six week growth experiment of daily cycling temperatures of either 27-31M-BM-0C or 32-36M-BM-0C, mimicking pond fluctuations.
Project description:Channel catfish (Ictalurus punctatus) and tra catfish (Pangasianodon hypophthalmus) both belong to the order Siluriformes. Channel catfish does not possess an air-breathing organ (ABO), and thus cannot breathe in the air, while tra catfish is a facultative air-breather and use the swim bladder as its air-breathing organ, which provides for aerial breathing in low oxygen conditions. Tra and channel catfish serve as a great comparative model for studying the transition of life from water to terrestrial living, as well as for understanding genes that are crucial for development of the swim bladder and the function of air-breathing in tra catfish. We selected seven developmental stages in tra catfish for RNA-Seq analysis based on their transition to a stage that could live at 0 ppm oxygen. More than 587 million sequencing clean reads were generated in tra catfish, and a total of 21, 448 unique genes were detected. A comparative genomic analysis was conducted between channel catfish and tra catfish. Gene expression analysis was performed for these tra catfish specific genes. Hypoxia challenge and microtomy experiments collectively suggested that there are critical timepoints for the development of the air-breathing function and swim bladder development stages in tra catfish. Key genes were identified to be the best candidates of genes related to the air-breathing ability in tra catfish. This study provides a large data resource for functional genomic studies in air-breathing function in tra catfish, and sheds light on the adaption of aquatic organisms to the terrestrial environment.
Project description:This study examined differentially expressed (DE) gene transcripts and regulated pathways of two geographically distinct channel catfish (Ictalurus punctatus) strains and one hybrid catfish (I. punctatus x [blue catfish] I. furcatus) strain to test whether one particular catfish type handled thermal stress better. Following a six-week growth experiment, where fish were subjected to daily cycling temperatures of either 27-31°C or 32-36°C, mimicking pond fluctuations. We sequenced 18 cDNA libraries of liver samples to obtain 61 million reads per library. There were 5,443 DE transcripts and 41,689 regulated pathways. Northern channel catfish had the highest amount of DE transcripts (48.6%), 5 times that of southern channel catfish, and the greatest amount of transcripts with fold changes ≥ 2. The overall amount of temperature-induced DE transcripts between southern hybrid and southern channel catfish was fairly comparable in relation to that of northern channel catfish, however, there were more transcripts up- or downregulated with ≥ 2 fold changes in channel catfish strains compared to the southern hybrid catfish. Results from this study strongly suggest genetic differences between geographic catfish types affect physiological responses to thermal stress. Furthermore, a number of genes were linked to thermal stress tolerance, which may be beneficial for understanding geographic differences in thermal stress tolerance in ectotherms and for strain development of catfish.
2014-04-23 | GSE56982 | GEO
Project description:Development of Microsatellite Markers for Giant river catfish Spearata seenghala
Project description:Channel catfish and blue catfish represent two economically important freshwater aquaculture species in the United States. Our study aims to investigate the gene expression differences between these two catfish species by high-throughput RNA sequencing to understand their associated phenotypic differences in growth and disease resistant. Our transcriptomic analyses provide some insights into gene function differences between the two species and the molecular basis of channel catfish growth advantage in the tank culture environment.
Project description:Cryopreservation of blue catfish sperm can cause variable embryo hatch rates, which is the limiting factor for hybrid catfish breeding. In this study, we investigated gene expression changes caused by cryopreservation using transcriptome profiles of fresh sperm samples and cryopreserved sperm from the same set of blue catfish.