Project description:We developed an artificial genome evolution system, which we termed ‘TAQing’, by introducing multiple genomic DNA double-strand breaks using a heat-activatable endonuclease in mitotic yeast. The heat-activated endonuclease, TaqI, induced random DSBs, which resulted in diverse types of chromosomal rearrangements including translocations. Array comparative genomic hybridization (aCGH) analysis was performed with cell-fused Saccharomyces cerevisiae strains induced genome evolution by TAQing system. Some of copy number variations (CNVs) induced by massive genome rearrangements were detected in the TAQed yeast strains.
Project description:Single-stranded DNA breaks (nicks) were tagged by biotin-dCTP in wild-type budding yeast cells and mapped by nick-ChIP coupled to whole-genomic microarrays.