Project description:Small RNAs play important roles in early embryonic development. However, their expression dynamics and modifications are poorly understood because of the scarcity of RNA that is obtainable for sequencing analysis. Using an improved deep sequencing method that requires as little as 10 ng of total RNA or 50 oocytes, we profile small RNAs in mouse oocytes and early embryos. We find that microRNA (miRNA) expression starts soon after fertilization, and the mature miRNAs carried into the zygote by sperm during fertilization are relatively rare compared to the oocyte miRNAs. Intriguingly, the zygotic miRNAs display a marked increase in 3â² mono- and oligoadenylation in one- to two-cell embryos, which may protect the miRNAs from the massive degradation taking place during that time. Moreover, bioinformatics analyses show that the function of miRNA is suppressed from the oocyte to the two-cell stage and appears to be reactivated after the two-cell stage to regulate genes important in embryonic development. Our study thus provides a highly sensitive profiling method and valuable data sets for further examination of small RNAs in early embryos. Investigate small RNAs in the mouse oocyte and early embryo development, evaluate the reproducibility and sensitivity of the improved method in HEK293 cell lines. The SRA Study accession is SRP045287 , and The BioProject accession is PRJNA257532.
Project description:Small RNAs play important roles in early embryonic development. However, their expression dynamics and modifications are poorly understood because of the scarcity of RNA that is obtainable for sequencing analysis. Using an improved deep sequencing method that requires as little as 10 ng of total RNA or 50 oocytes, we profile small RNAs in mouse oocytes and early embryos. We find that microRNA (miRNA) expression starts soon after fertilization, and the mature miRNAs carried into the zygote by sperm during fertilization are relatively rare compared to the oocyte miRNAs. Intriguingly, the zygotic miRNAs display a marked increase in 3′ mono- and oligoadenylation in one- to two-cell embryos, which may protect the miRNAs from the massive degradation taking place during that time. Moreover, bioinformatics analyses show that the function of miRNA is suppressed from the oocyte to the two-cell stage and appears to be reactivated after the two-cell stage to regulate genes important in embryonic development. Our study thus provides a highly sensitive profiling method and valuable data sets for further examination of small RNAs in early embryos.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Transcriptome analysis of oocytes and early embryos to demonstrate trancriptional regulation during mouse oocyte-to-embryo transition