Project description:To investigate transcriptomic and hormonal responses of Russet Burbank potato tubers under ethylene treatment during dormancy progression and postharvest storage.
Project description:We report on the kiwifruit postharvest phase through an approach consisting of 2D-DIGE/nanoLC-ESI-LIT-MS/MS-based proteomic measurements. Kiwifruit samples stored under conventional, cold-based postharvest conditions were sampled at four stages (from fruit harvest to pre-commercialization) and analyzed in comparison protein content. Proteomics showed that proteins associated with disease/defense, energy, protein destination/storage, cell structure and metabolism functions were affected at precise fruit postharvest times. By lining up kiwifruit postharvest processing to a proteomic depiction, this study integrates previous observations on protein content in postharvest pomes treated with specific chemical additives, and provides a reference framework for further studies on the optimization of fruit storage before its commercialization.
Project description:An in vivo and in vitro potato tuber development gene expression study. For in vitro tuber development expression analysis, RNA was isolated from in vitro microtubers at 2, 5, 10, 20 and 30 days following observed tuber induction. Two microtuber populations were used as biological replicates for the developmental stages. The RNA from all developmental stages was pooled to generate the reference samples. Ten microarray hybridizations were performed. For in vivo tuber development expression analysis, RNA was isolated from tubers growing in growth chamber conditions. Tissues were divided into six group, according to developmental size: stolon (no tuber formation), 1-5 mm tubers, 6-10 mm tubers, 11-15 mm tubers, 16-25 mm tubers, and 26-35 mm tubers. Two biological replicates of ten plants each were grown sequentially in the same growth chamber. The RNA from all developmental stages was pooled to generate the reference samples. Twelve microarray hybridizations were performed. For all experiments, the RNA was labeled using the indirect labeling method with random hexamer primers. Amplified cRNA was used as labeling template for stolons. Total RNA was used as labeling template in all other labeling reactions.
Project description:Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, it can replicate in the nucleus and the viroid RNA moves systemically in infected plants. Its KF440-2 strain can cause severe symptoms in potato. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. In this study, we used a high-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathways connected genes showed up- or down-regulation. Our primary focus is on the identification of genes which can affect tuber formation as the viroid infection can strongly influence tuber development, especially tuber shape is affected. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 protein were identified and validated which showed differential expression in viroid infected tissues suggesting that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection.
Project description:Gene expression associated with apple fruit ripening and postharvest treatments was studied to identify transcripts that are regulated by ethylene signaling.
Project description:affy_sunflower_2010_13 - affy_sunflower_2010_13 - It concerns the interaction between ROS and hormones in dormancy release in sunflower seeds. ABA is responsible for dormancy maintenance, while GA and ethylene promote seed germination. Based on our results, ROS could represent good candidate to shift from a hormone signalling to another determining the dormancy state in sunflower seeds.-We aim to understand the mechanisms controlling sunflower seed dormancy at the transcriptomic level, by the application of treatments which maintain dormancy as ABA, or alleviate dormancy as ROS and ethylene. Transcripts comparison will be performed between dormant and non-dormant sunflower embryo imbibed 24h on water, on ABA, on methylviologen, a pro-oxidant compound or on ethylene.