Project description:Purpose: Stanniocalcin 1 (STC1) is a secreted glycoprotein expressed in mesenchymal stroma cells (MSCs). STC1 expression is upregulated in response to acute myeloid leukemia (AML) co-culture. Recombinant STC1 has proliferation limiting effects on human hematopoietic stem/progenitors cells (HSPCs) and facilitiates the preservation of HSCs ex vivo. We hope to gain insight into the mechanism by exploring the transcriptome of stem/progenitors exposed to STC1.
Project description:Dysregulation of cytokines in the bone marrow microenvironment promotes acute myeloid leukemia cell growth. Due to the complexity and low throughput of in vivo stem-cell based assays, studying the role of cytokines in the bone marrow niche in a screening setting is challenging. Herein, we developed an ex vivo cytokine screen using 11 arrayed molecular barcodes, allowing for a competitive in vivo readout of leukemia-initiating capacity. With this approach, we assessed the effect of 114 murine cytokines on MLL-AF9 acute myeloid leukemia mouse cells and identified the tumor necrosis factor ligand superfamily member 13 (TNFSF13) as a positive regulator of leukemia-initiating cells. By using Tnfsf13-/- recipient mice, we confirmed that TNFSF13 supports leukemia-initiation also under physiological conditions. TNFSF13 was secreted by normal myeloid cells but not by leukemia mouse cells, suggesting that mature myeloid bone marrow cells support leukemia cells by secreting TNFSF13. TNFSF13 supported leukemia cell proliferation in an NF-κB-dependent manner by binding TNFRSF17 and suppressed apoptosis. Moreover, TNFSF13 supported the growth and survival of several human myeloid leukemia cell lines, demonstrating that our findings translate to human disease. Taken together, using arrayed molecular barcoding, we identified a previously unrecognized role of TNFSF13 as a positive regulator of acute myeloid leukemia-initiating cells. The arrayed barcoded screening methodology is not limited to cytokines and leukemia, but can be extended to other types of ex vivo screens, where a multiplexed in vivo read-out of stem cell functionality is needed.
Project description:<p>The implementation of targeted therapies for acute myeloid leukemia has been challenged by complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here, we report initial findings from the Beat AML program on a cohort of 672 tumor specimens collected from 562 patients. We assessed these specimens using whole exome sequencing, RNA-sequencing, and ex vivo drug sensitivity analyses. Our data reveal novel mutational events not previously detected in AML. We show association of drug response with mutational status, including instances of drug sensitivity that are specific to combinatorial mutational events. Integration with RNA-sequencing also revealed gene expression signatures, which predict a role of specific gene networks in drug response. Collectively, this report offers a dataset, accessible by the Beat AML data viewer <a href="http://www.vizome.org/">(www.vizome.org)</a>, that can be leveraged to address clinical, genomic, transcriptomic, and functional inquiries into the biology of AML.</p>
Project description:Microarray expression arrays on THP-1 acute myeloid leukemia cell line samples, contrasting expression profiles of freshly harvested cell pellets, cells replated into fresh media for 24 hours and cells directly pelleted from liquid nitrogen stocks.
Project description:Microarray expression arrays on THP-1 acute myeloid leukemia cell line samples, contrasting expression profiles of freshly harvested cell pellets, cells replated into fresh media for 24 hours and cells directly pelleted from liquid nitrogen stocks. Nine samples were analysed, composed of 3 biological replicates for each state (fresh, replated, frozen)
Project description:Genetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting an essential driver role for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34+ thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from GSI treated T-ALL cell lines, ex vivo isolated Notch active CD34+ and Notch inactive CD4+CD8+ thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publically available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T-cell context. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way towards development of novel therapeutic strategies that target hyperactive Notch1 signaling in human T-cell acute lymphoblastic leukemia. CD34+ cells of 2 healthy donors are cultured on a OP9-GFP or OP9-DLL1 feeder layer.
Project description:Genetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting an essential driver role for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34+ thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from GSI treated T-ALL cell lines, ex vivo isolated Notch active CD34+ and Notch inactive CD4+CD8+ thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publically available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T-cell context. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way towards development of novel therapeutic strategies that target hyperactive Notch1 signaling in human T-cell acute lymphoblastic leukemia. CD34+ cells of 4 healthy donors are cultured on a OP9-GFP or OP9-DLL1 feeder layer.
Project description:Data for the manuscript Casirati et al. "Epitope Editing of Hematopoietic Stem Cells Enables Adoptive Immunotherapies for Acute Myeloid Leukemia"
Project description:We demonstrate that Msi2 is the predominant form expressed in hematopoietic stem cells (HSC), and its knockdown leads to reduced engraftment and depletion of HSCs in vivo. Overexpression of Msi2 in a mouse model increases HSC cell cycle progression and cooperates with BCR-ABL1 to induce an aggressive leukemia. MSI2 is over-expressed in human myeloid leukemia, and expression levels directly correlate with decreased patient survival, thereby defining MSI2 expression as a novel prognostic marker in acute myeloid leukemia (AML). Depletion of MSI2 in human myeloid leukemia cells leads to decreased proliferation and apoptosis. These data implicate the MSI2 RNA binding protein in myeloid leukemogenesis and identify a novel potential target for therapy in AML. We transduced four human leukemia cell lines with lentiviral shRNA vectors targeting MSI2. Hybridizations of treated and control samples from each cell line were dye swap replicated
Project description:Several fusion oncogenes showing a higher incidence in pediatric acute myeloid leukemia are associated with heterogeneous megakaryoblastic and other myeloid features. Here we addressed how developmental mechanisms influence human leukemogenesis by ETO2::GLIS2, a hallmark of dismal prognosis. We induced expression of ETO2::GLIS2 in primary human fetal and cord blood CD34+ hematopoietic cells and obtained bulk transcriptomes after in vitro cultures or in vivo engraftment and leukemia development in immunodeficient recipients (NSG or NSG-SGM3=NSG-S).