Project description:Differential gene expression analysis of RNASeq data from flag leaves from Triticum aestivm L. cv Thatcher at different time points and infection statuses upon infection with the leaf rust pathogen Pucinia triticina TBDG (11-180-1).
Project description:We collected infected wheat leaf material at up to nine time points per Z. tritici isolate and conducted confocal microscopy analyses to select samples for RNA extraction and transcriptome sequencing based on the morphological infection stage. Thereby, we generated stage-specific RNA-seq datasets corresponding to the four core infection stages allowing us to compare the isolate-specific expression profiles at the same developmental stage of infection. Our final dataset comprises four stage-specific transcriptomes per isolate with two biological replicates per sample. Comparative transcriptome analyses reveal that the expression phenotypes of the three isolates differ significantly.
Project description:Stem rust of wheat is a deleterious fungal disease across the globe causing severe yield losses. Although, many stem rust resistance genes (Sr) are being used in wheat breeding programs, new emerging stem rust pathotypes are a challenge to important Sr genes. In recent years, multiple studies on leaf and yellow rust molecular mechanism have been done, however, for stem rust such studies are lacking. Current study investigated stem rust induced response in the susceptible wheat genotype C306 and its Near Isogenic Line (NIL) for Sr24 gene, HW2004, using microarray analysis to understand the transcriptomic differences at different stages of infection. Results showed that HW2004 has higher basal levels of several important genes involved in pathogen detection, defence, and display early activation of multiple defence mechanisms. Further Gene Ontology (GO) and pathway analysis identified important genes responsible for pathogen detection, downstream signalling cascades and transcription factors (TFs) involved in activation and mediation of defence responses. Results suggest that generation of Reactive Oxygen Species (ROS), cytoskeletal rearrangement, activation of multiple hydrolases, and lipid metabolism mediated biosynthesis of certain secondary metabolites are collectively involved in Sr24-mediated defence in HW2004, in response to stem rust infection. Novel and unannotated, but highly responsive genes were also identified, which may also contribute towards resistance phenotype. Furthermore, certain DEGs also mapped close to the Sr24-linked marker on Thinopyrum elongatum translocated fragment on wheat 3E chromosome, which advocate further investigations for better insights of the Sr24-mediated stem rust resistance.