Project description:A new antibacterial 3-monoacyl-sn-glycerol, nostochopcerol (1), was isolated from a cultured algal mass of the edible cyanobacterium Nostochopsis lobatus MAC0804NAN. The structure of compound 1 was established by the analysis of NMR and MS data while its chirality was established by comparison of optical rotation values with synthetically prepared authentics. Compound 1 inhibited the growth of Bacillus subtilis and Staphylococcus aureus at MIC of 50 μg/mL and 100 μg/mL, respectively.
Project description:Queen conch are among the most economically, socially, and culturally important fishery resources in the Caribbean. Despite a multitude of fisheries management measures enacted across the region, populations are depleted and failing to recover. It is believed that queen conch are highly susceptible to depensatory processes, impacting reproductive success and contributing to the lack of recovery. We developed a model of reproductive dynamics to evaluate how variations in biological factors such as population density, movement speeds, rest periods between mating events, scent tracking, visual perception of conspecifics, sexual facilitation, and barriers to movement affect reproductive success and overall reproductive output. We compared simulation results to empirical observations of mating and spawning frequencies from conch populations in the central Bahamas and Florida Keys. Our results confirm that low probability of mate finding associated with decreased population density is the primary driver behind observed breeding behavior in the field, but is insufficient to explain observed trends. Specifically, sexual facilitation coupled with differences in movement speeds and ability to perceive conspecifics may explain the observed lack of mating at low densities and differences between mating frequencies in the central Bahamas and Florida Keys, respectively. Our simulations suggest that effective management strategies for queen conch should aim to protect high-density reproductive aggregations and critical breeding habitats.
Project description:The queen conch fishery in Jamaica is sustained by Pedro Bank, which is the main harvesting site located approximately 80 km south-west from Kingston. Due to its relative size, Pedro Bank has been subdivided into zones for management purposes by the Fisheries Division and the Veterinary Services Division. Understanding whether these sub-divisions reflect different sub-populations is critical for managing exploitation levels because fisheries management must demonstrate that harvesting does not endanger the future viability of the population as queen conch are on Appendix II of the Convention in Trade in Endangered Species of Wild Fauna and Flora (CITES). This determination is essential for the continued export to international markets such as the European Union. Two hundred and eight samples were collected across the entire Pedro Bank and were genetically characterized using nine polymorphic microsatellite loci. Population structure analysis for Lobatus gigas from Pedro Bank yielded low but significant values (FST = 0.009: p = 0.006) and suggested a high magnitude of gene flow indicative of a fit and viable population throughout the bank. Analysis of molecular variance (AMOVA) indicated a 100% variation within individual samples with little variation (0.9%) between populations. In contrast pairwise genetic comparisons identified significant differences between populations located to the south eastern and eastern region of the bank to those in the central and western locations. Bayesian clustering analysis also indicated the likelihood of two population sub-divisions (K = 2) on Pedro Bank. The results provided evidence of a weak but significant population structure which has crucial implications for the fishing industry as it suggests the use of ecosystem based management (EBM) in setting quotas to promote sustainable harvesting of L. gigas within each monitoring zone on Pedro Bank.
Project description:The endangered marine gastropod, Lobatus gigas, is an important fishery resource in the Caribbean region. Microbiological and parasitological research of this species have been poorly addressed despite its role in ecological fitness, conservation status and prevention of potential pathogenic infections. This study identified taxonomic groups associated with orange colored protrusions in the muscle of queen conchs using histological analysis, 454 pyrosequencing, and a combination of PCR amplification and automated Sanger sequencing. The molecular approaches indicate that the etiological agent of the muscle protrusions is a parasite belonging to the subclass Digenea. Additionally, the scope of the molecular technique allowed the detection of bacterial and fungi clades in the assignment analysis. This is the first evidence of a digenean infection in the muscle of this valuable Caribbean resource.