Project description:The purpose of this study is to analysis 41 RNA modification enzymes in 1659 HBM samples from 10 public datasets, and 100 HCC samples from Zhongshan Hospital of Fudan University (Shanghai, China). we designed an RH score model to predict the clinical prognosis, response to molecular targeted drugs and immunotherapy and transcriptional and posttranscriptional events, thereby providing a novel panel of next-generation sequencing for clinical translation.
2023-04-26 | GSE222334 | GEO
Project description:Metagenomic Next-Generation Sequencing (mNGS) of Clinical Samples
Project description:To evaluate targeted MinION next generation sequencing as a diagnostic method for detection of pathogens in human blood and plasma, human blood or plasma samples were spiked with measured amounts of viruses, bacteria, protozoan parasites or tested pathogen-free as negative controls. Nucleic acid was extracted from samples and PCR amplification performed in multiplex primer pools with a procedure described in ArrayExpress experiment submission ID 18379. The PCR products were used for library preparation. The libraries sequenced on an Oxford Nanopore MinION. The passed reads aligned with a custom reference file to determine the identity of the pathogen in the sample.
Project description:Streptococcus equi subsp. equi (SEE) is a host-restricted bacterium that causes the common infectious upper respiratory disease known as strangles in horses. Perpetuation of SEE infection appears attributable to inapparent carrier horses because it does not persist long-term in the environment, infect other host mammals or vectors, and result in short-lived immunity. Whether pathogen factors enable SEE to remain in horses without causing clinical signs remains poorly understood. Thus, our objective was to use next-generation sequencing technologies to characterize the transcriptome of isolates of SEE from horses with acute clinical strangles and inapparent carrier horses to assess pathogen-associated changes that might reflect adaptions of SEE to the host contributing to inapparent carriage. RNA sequencing of SEE isolates from Pennsylvania demonstrated no genes that were differentially expressed between acute clinical and inapparent carrier isolates of SEE.
Project description:The factors that determine the outcome of clinical tuberculosis lie within both the host and the pathogen, Mycobacterium tuberculosis (Mtb). The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of the host-pathogen interface for mammalian and pathogen genetic determinants of disease outcome. To identify host and pathogen genetic drivers of Mtb infection, we infected 19 genotypes from the BXD panel, bred from Mtb-resistant C57BL/6J (B6) and Mtb-susceptible DBA/2J (D2), with a comprehensive library of transposon mutants (TnSeq). The survival of each of the ~4000 bacterial mutants within each distinct host was quantified and leveraged as refined “endophenotypes”, directly reporting on the infection microenvironment. We leveraged QTL mapping to associate each varying bacterial fitness endophenotype to the host genome and identified 140 significant host-pathogen quantitative trait loci (hpQTL). This host-pathogen interaction screen reinforces the utility of bacterial mutant libraries as precise reporters of host immunological microenvironment during infection and highlights host gene candidates for further investigation.
Project description:Our data demonstrate the suitability of target capture technology for purifying very low quantities of Leptospira DNA from biological samples where the human genome is in vast excess. This enables deep sequencing of partial Leptospira genomes directly from clinical samples using next generation technologies and genotyping.