Project description:Alpha-synuclein is an abundant protein implicated in synaptic function and plasticity, but the molecular mechanism of its action is not understood. Missense mutations and gene duplication/triplication events result in Parkinson's disease, a neurodegenerative disorder of old age with impaired movement and emotion control. Here, we systematically investigated the striatal as well as the cerebellar transcriptome profile of alpha-synuclein-deficient mice via a genome-wide microarray survey in order to gain hypothesis-free molecular insights into the physiological function of alpha-synuclein. A genotype-dependent, specific and strong downregulation of forkhead box P1 (Foxp1) transcript levels was observed in all brain regions from postnatal age until old age and could be validated by qPCR. In view of the co-localization and heterodimer formation of FOXP1 with FOXP2, a transcription factor with a well established role for vocalization, and the reported regulation of both alpha-synuclein and FOXP2 expression during avian song learning, we performed a detailed assessment of mouse movements and vocalizations in the postnatal period. While there was no difference in isolation-induced behavioral activity in these animals, the alpha-synuclein-deficient mice exhibited an increased production of isolation-induced ultrasonic vocalizations (USVs). This phenotype might also reflect the reduced expression of the anxiety-related GABA-A receptor subunit gamma 2 (Gabrg2) we observed. Taken together, we identified an early behavioral consequence of alpha-synuclein deficiency and accompanying molecular changes, which supports the notion that the neural connectivity of sound or emotion control systems is affected. Factorial design comparing SNCA knock-out mice with wild type littermates in two different tissues (striatum, cerebellum) at two different timepoints (6 and 21 month)
Project description:Alpha-synuclein is an abundant protein implicated in synaptic function and plasticity, but the molecular mechanism of its action is not understood. Missense mutations and gene duplication/triplication events result in Parkinson's disease, a neurodegenerative disorder of old age with impaired movement and emotion control. Here, we systematically investigated the striatal as well as the cerebellar transcriptome profile of alpha-synuclein-deficient mice via a genome-wide microarray survey in order to gain hypothesis-free molecular insights into the physiological function of alpha-synuclein. A genotype-dependent, specific and strong downregulation of forkhead box P1 (Foxp1) transcript levels was observed in all brain regions from postnatal age until old age and could be validated by qPCR. In view of the co-localization and heterodimer formation of FOXP1 with FOXP2, a transcription factor with a well established role for vocalization, and the reported regulation of both alpha-synuclein and FOXP2 expression during avian song learning, we performed a detailed assessment of mouse movements and vocalizations in the postnatal period. While there was no difference in isolation-induced behavioral activity in these animals, the alpha-synuclein-deficient mice exhibited an increased production of isolation-induced ultrasonic vocalizations (USVs). This phenotype might also reflect the reduced expression of the anxiety-related GABA-A receptor subunit gamma 2 (Gabrg2) we observed. Taken together, we identified an early behavioral consequence of alpha-synuclein deficiency and accompanying molecular changes, which supports the notion that the neural connectivity of sound or emotion control systems is affected.
Project description:Mutations in the gene encoding the transcription factor forkhead box P1 or FOXP1 occur in patients with neurodevelopmental disorders, including autism. However, the function of FOXP1 in the brain remains mostly unknown. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and mouse brain and demonstrate a conserved role for FOXP1 transcriptional regulation of autism and Fragile X Mental Retardation Protein (FMRP) mediated pathways. Coexpression networks support a role for Foxp1 in neuronal activity, and we show that Foxp1 is necessary for neuronal excitability. Using a Foxp1 mouse model, we observe defects in ultrasonic vocalizations. This behavioral phenotype is reflected at the genomic level as striatal Foxp1-regulated overlap with genes known to be important in rodent vocalizations. These data support an integral role for FOXP1 in regulating signaling pathways vulnerable in developmental disorders and the specific regulation of pathways important for vocal communication.
Project description:Mutations in the gene encoding the transcription factor forkhead box P1 or FOXP1 occur in patients with neurodevelopmental disorders, including autism. However, the function of FOXP1 in the brain remains mostly unknown. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and mouse brain and demonstrate a conserved role for FOXP1 transcriptional regulation of autism and Fragile X Mental Retardation Protein (FMRP) mediated pathways. Coexpression networks support a role for Foxp1 in neuronal activity, and we show that Foxp1 is necessary for neuronal excitability. Using a Foxp1 mouse model, we observe defects in ultrasonic vocalizations. This behavioral phenotype is reflected at the genomic level as striatal Foxp1-regulated overlap with genes known to be important in rodent vocalizations. These data support an integral role for FOXP1 in regulating signaling pathways vulnerable in developmental disorders and the specific regulation of pathways important for vocal communication. We carried out RNA-sequencing (RNA-seq) and ChIP-sequencing of human neural progenitors cells. We carried out RNA-sequencing (RNA-seq) of mouse striatal tissue, mouse hippocampal tissue and mouse cortical tissue. For the RNA-seq, four indipendent replicates were used for the neural progenitor cells and mouse tissues. For the Chip-seq, a single neural progenitor cell line was used.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.