Project description:Goal of experiment: Identify genes down-regulated between pre- and post-natal stages in mouse dental papillae. Epithelial-mesenchymal interaction is very important during tooth development, and many genes are associated with odontogenesis. The capacity for odontogenesis in mouse dental papillae disappears between the pre- and post-natal stages. We hypothesized that genes involved in odontogenesis were down-regulated in dental papillae between these stages. To test this hypothesis, we investigated and compared gene profiles in pre- and post-natal stage dental papillae with the GeneChip® Mouse Genome 430 2.0 Array.
Project description:Dental pulp cells obtained from several donors proliferated actively in a serum-free medium STK2. The growth rate of dental pulp cells from most donors was higher in the serum-free medium than that in a medium containing 10% serum. DNA microarray analyses showed that gene expression profile of dental pulp cells grown in the serum-free medium was similar to that of cells grown in a medium containing 10% serum. However, several genes related to cell proliferation were up-regulated in dental pulp cells grown in the serum-free medium.
Project description:Dental pulp plays a crucial role for dental health, and dental pulp aging influences their regenerative and reparative function. However, the underlying molecular mechanisms of dental pulp aging are not exhaustively understood, and thereby an in-depth and complete understanding of the aged dental pulp is of foremost importance. This study aimed to explore the heterogeneity of young and aged dental pulp tissue using single-cell RNA sequencing (scRNA-seq).
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Deciduous and permanent human teeth represent a model system to study ageing of mesenchymal populations. Aging is tightly connected to self-renewal and proliferation and thus, mapping potential molecular differences in these characteristics between populations constitutes an important task. Specifically designed microarray panels were used. We have detected a number of molecules that were differentially expressed in dental pulp mesenchyme from deciduous and permanent teeth extracted from young children and adults, respectively. Among the differentially regulated genes HMGA2, a stem cell-associated marker, stood out as a remarkable example with a robust expression in deciduous pulp cells. In addition to this, we discovered that several proliferation-related genes, including CDC2A and CDK4, were up-regulated in deciduous pulp cells, while matrix genes COL1A1, fibronectin and several signaling molecules, such as VEGF, FGFr-1 and IGFr-1 were up-regulated in the pulp cells from permanent teeth. Taken together, our data suggest that deciduous pulp cells are more robust in self- renewal and proliferation, whereas adult dental pulp cells are more capable of signaling and matrix synthesis.
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff2 knock-out mouse model, 48 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff3 knock-out mouse model, 21 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:A transcriptome study in mouse hematopoietic stem cells was performed using a sensitive SAGE method, in an attempt to detect medium and low abundant transcripts expressed in these cells. Among a total of 31,380 unique transcript, 17,326 (55%) known genes were detected, 14,054 (45%) low-copy transcripts that have no matches to currently known genes. 3,899 (23%) were alternatively spliced transcripts of the known genes and 3,754 (22%) represent anti-sense transcripts from known genes.