Project description:Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood. This study examined transcriptomic and microbiome changes in shallow-water mussels Mytilus galloprovincialis exposed to deep-sea conditions at the Site-F cold seep in the South China Sea. Results reveal complex gene expression adjustments in stress response, immune defense, homeostasis, and energy metabolism pathways during adaptation. After 10 days of deep-sea exposure, shallow-water mussels and their microbial communities closely resembled those of native deep-sea mussels, demonstrating host and microbiome convergence in response to adaptive shifts. Notably, methanotrophic bacteria, key symbionts in native deep-sea mussels, emerged as a dominant group in the exposed mussels. Host genes involved in immune recognition and endocytosis correlated significantly with the abundance of these bacteria. Overall, our analyses provide insights into adaptive transcriptional regulation and microbiome dynamics of mussels in deep-sea environments, highlighting the roles of conserved genes and microbial community shifts in adapting to extreme environments.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.
Project description:Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated microbial community profiles as well as directly assayed nitrogen cycling genes that encode the enzymes responsible for overall nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms responsible for production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that elevated rates of nitrous oxide production and consumption are the result of changes in community structure, not simply changes in microbial activity.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. nirS gene diversity from two salt marsh experiments, GSM (4 treatments, 8 samples, duplicate arrays, four replicate blocks per array, 8 arrays per slide) and PIE (2 treatments, 16 samples, duplicate arrays four replicate blocks per array, 8 arrays per slide)
Project description:The deep marine subsurface is one of the largest unexplored biospheres on Earth, where members of the phylum Chloroflexi are abundant and globally distributed. However, the deep-sea Chloroflexi have remained elusive to cultivation, hampering a more thorough understanding of their metabolisms. In this work, we have successfully isolated a representative of the phylum Chloroflexi, designated strain ZRK33, from deep-sea cold seep sediments. Phylogenetic analyses based on 16S rRNA genes, genomes, RpoB and EF-tu proteins indicated that strain ZRK33 represents a novel class within the phylum Chloroflexi, designated Sulfochloroflexia. We present a detailed description of the phenotypic traits, complete genome sequence and central metabolisms of the novel strain ZRK33. Notably, sulfate and thiosulfate could significantly promote the growth of the new isolate, possibly through accelerating the hydrolysis and uptake of saccharides. Thus, this result reveals that strain ZRK33 may play a crucial part in sulfur cycling in the deep-sea environments. Moreover, the putative genes associated with assimilatory and dissimilatory sulfate reduction are broadly distributed in the genomes of 27 metagenome-assembled genomes (MAGs) from deep-sea cold seep and hydrothermal vents sediments. Together, we propose that the deep marine subsurface Chloroflexi play key roles in sulfur cycling for the first time. This may concomitantly suggest an unsuspected availability of sulfur-containing compounds to allow for the high abundance of Chloroflexi in the deep sea.
Project description:Marine microorganisms inhabiting the bathypelagic zone (1000 m - 4000 m) are pivotal to biogeochemical cycling. However, a comprehensive understanding of microbial community structure and their metabolic activities adaptations to the extreme deep-sea conditions remains elusive. In this study, we employed a metaproteomic approach to investigate the protein profiles of microbial communities spanning the surface and bathypelagic layers of the South China Sea (SCS) and performed a comparative analysis with metagenomic data. The metaproteome and metagenome showed low correlation in functional expression but a high correlation at the phylum level. High-abundance genes were more likely to be translated into proteins, with protein over-representation observed in energy conversion and matter transport processes. Short-chain amide porins facilitate substance exchange and maintain cellular homeostasis, enabling Methylococcales to adapt to deep-sea conditions and actively oxidize methane. Flexible energy utilization strategies, such as CO oxidation, enable Propionibacteriales to thrive in deep-sea environments. This study highlights the significance of microbial enzyme resources and offers valuable insights into the adaptations of deep-sea microorganisms, emphasizing their considerable application potential.
2024-12-02 | PXD058504 |
Project description:bacterial community in the deep-sea surface sediments
Project description:Zero-valent sulfur (ZVS) distributes widely in the deep-sea cold seep, which is important immediate in the active sulfur cycle of cold seep. In our preview work, a novel ZVS formation pathway discovered in the deep-sea cold weep bacterium Erythrobacter flavus 21-3 was described. However, whether this pathway worked and what function roles it played in the cold seep were unknown. In this study, E. flavus 21-3 was verified to produce zero-valent sulfur in the cold seep using genes soxB and tsdA as our preview report described. Based on proteomic data, stoichiometric methods and microscopic observation, this ZVS formation pathway benefited E. flavus 21-3 in the deep-sea cold seep. Notably, 30% metagenomes contained these two genes in the shallow sediments, which present the most abundant sulfur genes and active sulfur cycle in the cold seep sediments. It suggested that this sulfur formation pathway exist across many bacteria in the cold seep. This strongly indicates that this novel pathway might be frequently used by microbes and plays an important role in the biogeochemical sulfur cycle in cold seep.