Project description:The goal of the study was to examine the transcriptional changes in human lymphatic endothelial cells (LEC) stimulated by interleukin-1beta
Project description:Gene expression changes in subconfluent mouse aortic endothelial cells were compared with confluent endothelial cells. Compartmental analysis showed coordinater response in several endothelial-specific functions and organelles (endoplasmic reticulum, Golgi, lysosomes, peroxisomes) which were downregulated, and upregulation of the microtubular system and proliferation. Keywords = endothelium Keywords = confluent Keywords = subconfluent Keywords = organelles Keywords: other
Project description:The similar response of endothelial cells to exogenous IL-33 or IL-1β prompted us to compare the genome-wide transcription profile of confluent human umbilical vein endothelial cell (HUVEC) cultures after 4 hours exposure to IL-33 or IL-1β. Analysis of these data revealed a striking similarity in the transcriptional response to the two cytokines.
Project description:GeneChip® Mouse Gene 2.0 ST Array for C57BL/6 mouse skin dermal primary lymphatic endothelial cells (Ms LEC) and mouse lymphatic endothelial cell line SVEC4-10 GeneChip® Human Gene 2.0 ST Array for human primary lymphatic endothelial cells (Hu LEC) Total RNA from lymphatic cell line SVEC4-10 were used for GeneChip® Mouse Gene 2.0 ST Array. SVEC4-10 samples, human and mouse LEC samples.
Project description:GeneChip® Mouse Gene 2.0 ST Array for C57BL/6 mouse skin dermal primary lymphatic endothelial cells (Ms LEC) and mouse lymphatic endothelial cell line SVEC4-10 GeneChip® Human Gene 2.0 ST Array for human primary lymphatic endothelial cells (Hu LEC) Total RNA from lymphatic cell line SVEC4-10 were used for GeneChip® Mouse Gene 2.0 ST Array.
Project description:To observe the global changes in the lymphatic endothelial cells upon exposure to filarial antigens or parasites, LECs were stimulated for 24, 48, and 72hrs and the expression profiles were carried out. Human filarial parasites Brugia malayi and Wuchereria bancrofti habitat the lymphatics and cause lymphatic dilatation and lymphedema. In order to evaluate the effect of various stage specific effects on the lymphatic endothelial cells (LEC) and understand how they modulate the lymphatic dysfunction, LECs were stimulated in antigens derived from the Brugia malayi. These are preliminary time course data towards understanding how the filarial antigens induce lymphangiogenesis.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)
Project description:The identification of circulating endothelial progenitor cells has led to speculation regarding their origin as well as their contribution to neovascular development. Two distinct types of endothelium make up the blood and lymphatic vessel system. However, it has yet to be determined whether there are distinct lymphatic-specific circulating endothelial progenitor cells. We isolated circulating endothelial colony forming cells (ECFCs) from whole peripheral blood. These cells are endothelial in nature, as defined by their expression of endothelial markers and their ability to undergo capillary morphogenesis in three-dimensional culture. A subset of isolated colonies express markers of lymphatic endothelium, including VEGFR-3 and Prox-1, with low levels of VEGFR-1, a blood endothelial marker, while the bulk of the isolated cells express high VEGFR-1 levels with low VEGFR-3 and Prox-1 expression. The different isolates have differential responses to VEGF-C, a lymphatic endothelial specific cytokine, strongly suggesting that there are lymphatic specific and blood specific ECFCs. Global analysis of gene expression revealed key differences in the regulation of pathways involved in cellular differentiation between blood and lymphatic-specific ECFCs. These data indicate that there are two distinguishable circulating ECFC types, blood and lymphatic, which are likely to have discrete functions during neovascularization. RNA was isolated from 2 blood-specific ECFC cell lines and 2 lymphatic-specific ECFC cell lines 3 separate times each