Project description:We sought to apply the technologies of gene expression profiling to detect genes significant in the aetiology of cervical carcinoma . We investigated 14 normal (NAD), 11 low grade squamous intrapepithelial lesions (LSIL), 21 high grade squamous intraepithelial lesions (HSIL) and 28 squamous cell carcinomas by Affymetrix GeneChip whole transcriptome profiling. Two SCC cell lines were also included in the cohort. Normal and SILS were profiled using the Affymetrix U133A platform, while SCCs and Cell lines were profiled using the Affymetrix U133A plus 2.0 array. This submission describes the transcriptional profiles of a cohort totalling 77 cervical normal, premalignant lesions, and squamous cell carcinomas
Project description:10 normal squamous cervical epitheilia samples, 7 high grade squamous intraepithelial lesions, and 21 invasive squamous cell carcinomas of the cervix samples were obtained using laser capture miicrodissection. Two rounds of T7-based linear RNA amplification using the Arcturus RiboAmp kit were performed for each sample, and assayed using Affymetrix HG_U133A arrays. Experiment Overall Design: 10 normal squamous cervical epitheilia samples, 7 high grade squamous intraepithelial lesions, and 21 invasive squamous cell carcinomas of the cervix, each from different patients, were each assayed on single HG_U133A arrays. Three additional test samples were also assayed. Experiment Overall Design: The log-transformed probe-set values and the results of the statistical analysis for each probe-set, and the associated README file, are included as Supplementary files.
Project description:We sought to apply the technologies of gene expression profiling to detect genes significant in the aetiology of cervical carcinoma . We investigated 14 normal (NAD), 11 low grade squamous intrapepithelial lesions (LSIL), 21 high grade squamous intraepithelial lesions (HSIL) and 28 squamous cell carcinomas by Affymetrix GeneChip whole transcriptome profiling. Two SCC cell lines were also included in the cohort. Normal and SILS were profiled using the Affymetrix U133A platform, while SCCs and Cell lines were profiled using the Affymetrix U133A plus 2.0 array.
Project description:Cervical cancer ranks as the first in cancer mortality among women of low-middle income countries, where 80% of the 570,000 cases and 311,000 worldwide deaths estimated for 2018 occurred (Ferlay et al. 2018 ). Persistent infections with high-risk HPV (hrHPV) genotypes can lead to high-grade cervical intraepithelial (CIN) grade 2 (CIN2) or higher, (CIN2+), if untreated, a high percentage of these lesions may progress to cancer. Despite its high sensitivity, the hrHPV test has low specificity to detect CIN2+ lesions given that a high percentage of women (80 %) infected with hrHPV genotypes will resolve the infection spontaneously. microRNAs (miRNAs) are small non-coding RNAs and their differential expression patterns seen to be associated with cervical intraepithelial lesions. Our work aimed to identify miRNAs differentially expressed in CIN2+ respect with <CIN1 and to evaluate their potential use as biomarkers to distinguish low- from high-grade lesions within hrHPV positive women. For our discovery set we used small RNA sequencing (miRNA-seq) to compare the miRNA expression patterns in 20 Formalin-Fixed Paraffin-Embedded (FFPE) tissues from hrHPV-positive women from Medellin, Colombia presenting low- (n=10) and high-grade lesions (n=10). Top five miRNAs presenting high fold change and low coefficient of variation were used validated by RT-PCR in our validation set composed 210 age-matched independent hrHPV-positive FFPE tissues, and an in-silico approach was used to understand the function of the differentially expressed miRNAs in the context of HPV infection.
Project description:Background. MicroRNAs (miRNAs) are short (~22 nt) non-coding regulatory RNAs that control gene expression at the translational level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. This prompted the development of miRNA-chips for cancer diagnosis or prognosis, opening a new door to understand carcinogenesis. Cervical cancer is one of the most common cancers in women worldwide. Therefore, there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform developed in house containing probes for mature miRNAs. Results. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL) and 9 low-grade squamous intraepithelial lesion (LSIL) samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, miRNAs deregulation in malignant and pre-malignant cervical tissues was detected after tackling the high variability observed. We were also able to identify putative targets of relevant candidate miRNAs. Conclusions. Our results show that miRNA deregulation may play an important role in the malignant transformation of cervical squamous cells. In addition, deregulated miRNAs highlight new candidate targets allowing a better understanding of the molecular mechanism of this tumour type. In this study we used a common reference design experiment where the common reference used was a commercial RNA from normal cervix (Ambion) and the test samples were 4 pre-treatment squamous cell cervical carcinoma, 7 high-grade Squamous Intraepithelial Lesion (CINII, n=2 and CIN III, n=5) sample, 9 low-grade Squamous Intraepithelial Lesion (CIN I) samples, 19 normal cervix samples and 4 pools of normal cervix samples.
Project description:Epigenetic modifications, such as aberrant DNA promoter methylation is frequently observed in cervical cancer. Identification of hypermethylated regions maybe useful for discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3) or worse may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions were characterised using genome-wide methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methyl-DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium resulting in the identification of hypermethylated differentially methylated regions (DMRs). Validation of 9 selected DMRs by MSP or BSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was applied exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples (p<0.001). Clinical validation of both markers in cervical scrapings from patients referred with an abnormal cervical smear, confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion (p<0.001) and the ROC analysis was discriminative (p<0.005). These possible methylation markers represent COL25A1 and KATNAL2 promoters and their observed increased methylation upon progression is in agreement with their biological function (cytoskeleton regulation). In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and could be potential biomarkers for early detection. Epigenetic modifications, such as aberrant DNA promoter methylation is frequently observed in cervical cancer. Identification of hypermethylated regions maybe useful for discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3) or worse may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions were characterised using genome-wide methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methyl-DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium resulting in the identification of hypermethylated differentially methylated regions (DMRs). Validation of 9 selected DMRs by MSP or BSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was applied exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples (p<0.001). Clinical validation of both markers in cervical scrapings from patients referred with an abnormal cervical smear, confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion (p<0.001) and the ROC analysis was discriminative (p<0.005). These possible methylation markers represent COL25A1 and KATNAL2 promoters and their observed increased methylation upon progression is in agreement with their biological function (cytoskeleton regulation). In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and could be potential biomarkers for early detection. MeDIP with subsequent microarray analysis was performed on DNA isolated from frozen macrodissected epithelial tissue of CIN3 lesions (n=15) and normal cervices (n=10).
Project description:10 normal squamous cervical epitheilia samples, 7 high grade squamous intraepithelial lesions, and 21 invasive squamous cell carcinomas of the cervix samples were obtained using laser capture miicrodissection. Two rounds of T7-based linear RNA amplification using the Arcturus RiboAmp kit were performed for each sample, and assayed using Affymetrix HG_U133A arrays. Keywords: disease state analysis
Project description:The goal of this study was to investigate differential regulation of miRNA expression in the cervical tissue of women with low-grade cervical intraepithelial neoplasia (LGCIN, or low grade cervical dysplasia). We compared the miRNA expression profiles of women with LGCIN that progressed to high-grade CIN to the miRNA expression profiles of women with LGCIN that naturally resolved without medical intervention.
Project description:Epigenetic modifications, such as aberrant DNA promoter methylation is frequently observed in cervical cancer. Identification of hypermethylated regions maybe useful for discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3) or worse may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions were characterised using genome-wide methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methyl-DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium resulting in the identification of hypermethylated differentially methylated regions (DMRs). Validation of 9 selected DMRs by MSP or BSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was applied exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples (p<0.001). Clinical validation of both markers in cervical scrapings from patients referred with an abnormal cervical smear, confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion (p<0.001) and the ROC analysis was discriminative (p<0.005). These possible methylation markers represent COL25A1 and KATNAL2 promoters and their observed increased methylation upon progression is in agreement with their biological function (cytoskeleton regulation). In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and could be potential biomarkers for early detection. Epigenetic modifications, such as aberrant DNA promoter methylation is frequently observed in cervical cancer. Identification of hypermethylated regions maybe useful for discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3) or worse may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions were characterised using genome-wide methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methyl-DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium resulting in the identification of hypermethylated differentially methylated regions (DMRs). Validation of 9 selected DMRs by MSP or BSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was applied exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples (p<0.001). Clinical validation of both markers in cervical scrapings from patients referred with an abnormal cervical smear, confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion (p<0.001) and the ROC analysis was discriminative (p<0.005). These possible methylation markers represent COL25A1 and KATNAL2 promoters and their observed increased methylation upon progression is in agreement with their biological function (cytoskeleton regulation). In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and could be potential biomarkers for early detection.
Project description:Background. MicroRNAs (miRNAs) are short (~22 nt) non-coding regulatory RNAs that control gene expression at the translational level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. This prompted the development of miRNA-chips for cancer diagnosis or prognosis, opening a new door to understand carcinogenesis. Cervical cancer is one of the most common cancers in women worldwide. Therefore, there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform developed in house containing probes for mature miRNAs. Results. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL) and 9 low-grade squamous intraepithelial lesion (LSIL) samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, miRNAs deregulation in malignant and pre-malignant cervical tissues was detected after tackling the high variability observed. We were also able to identify putative targets of relevant candidate miRNAs. Conclusions. Our results show that miRNA deregulation may play an important role in the malignant transformation of cervical squamous cells. In addition, deregulated miRNAs highlight new candidate targets allowing a better understanding of the molecular mechanism of this tumour type.