Project description:BACKGROUND: Listeria monocytogenes is a well-characterized food-borne pathogen that infects pregnant women and immunocompromised individuals. Listeriolysin O (LLO) is the major virulence factor of the pathogen and is often used as a diagnostic marker for detection of L. monocytogenes. In addition, LLO represents a potent antigen driving T cell-mediated immunity during infection. In the present work, Lactococcus lactis NZ9000 was used as an expression host to hyper-produce LLO under inducible conditions using the NICE (NIsin Controlled Expression) system. We created a modified pNZ8048 vector encoding a six-His-tagged LLO downstream of the strong inducible PnisA promoter. RESULTS: The constructed vector (pNZPnisA:CYTO-LLO) was expressed in L. lactis NZ9000 and was best induced at mid-log phase with 0.2% v/v nisin for 4 h statically at 30 degrees C. Purification of the His-tagged LLO was accomplished by Ni-NTA affinity chromatography and functionality was confirmed through haemolytic assays. Total LLO yield (measured as total protein content) was 4.43-5.9 mg per litre culture and the haemolytic activity was still detectable after 8 months of storage at 4 degrees C. CONCLUSION: The LLO production method described in this work provides an approach to efficient LLO production in the Gram-positive Lactococcus bacterium to yield a significant source of the protein for research and diagnostic applications. Expression of LLO in L. lactis has a number of benefits over E. coli which may facilitate both in vivo and in vitro applications of this system.
Project description:Lactococcus lactis NZ9000 and its parent MG1363 are the most commonly used lactic acid bacteria for expression and physiological studies. We noted unexpected but significant differences in the growth behaviors of both strains. We sequenced the entire genomes of the original NZ9000 and MG1363 strains using an ultradeep sequencing strategy. The analysis of the L. lactis NZ9000 genome yielded 79 differences, mostly point mutations, with the annotated genome sequence of L. lactis MG1363. Resequencing of the MG1363 strain revealed that 73 out of the 79 differences were due to errors in the published sequence. Comparative transcriptomic studies revealed several differences in the regulation of genes involved in sugar fermentation, which can be explained by two specific mutations in a region of the ptcC promoter with a key role in the regulation of cellobiose and glucose uptake.
Project description:BackgroundMicrobial cell factories are widely used in the production of acidic products such as organic acids and amino acids. However, the metabolic activity of microbial cells and their production efficiency are severely inhibited with the accumulation of intracellular acidic metabolites. Therefore, it remains a key issue to enhance the acid tolerance of microbial cells. In this study, we investigated the effects of four ATP-binding cassette (ABC) transporters on acid stress tolerance in Lactococcus lactis.ResultsOverexpressing the rbsA, rbsB, msmK, and dppA genes exhibited 5.8-, 12.2-, 213.7-, and 5.2-fold higher survival rates than the control strain, respectively, after acid shock for 3 h at pH 4.0. Subsequently, transcriptional profile alterations in recombinant strains were analyzed during acid stress. The differentially expressed genes associated with cold-shock proteins (csp), fatty acid biosynthesis (fabH), and coenzyme A biosynthesis (coaD) were up-regulated in the four recombinant strains during acid stress. Additionally, some genes were differentially expressed in specific recombinant strains. For example, in L. lactis (RbsB), genes involved in the pyrimidine biosynthetic pathway (pyrCBDEK) and glycine or betaine transport process (busAA and busAB) were up-regulated during acid stress, and the argG genes showed up-regulations in L. lactis (MsmK). Finally, we found that overexpression of the ABC transporters RbsB and MsmK increased intracellular ATP concentrations to protect cells against acidic damage in the initial stage of acid stress. Furthermore, L. lactis (MsmK) consistently maintained elevated ATP concentrations under acid stress.ConclusionsThis study elucidates the common and specific mechanisms underlying improved acid tolerance by manipulating ABC transporters and provides a further understanding of the role of ABC transporters in acid-stress tolerance.
Project description:Our transcriptome data shows that the two-component system CesSR, which senses cell envelope stresses of different origins, is one of the major players when L. lactis is forced to overproduce the endogenous membrane protein BcaP, a branched-chain amino acid permease.
Project description:Lactococcus lactis NZ9000 and its parent MG1363 are the most commonly used lactic acid bacteria for expression and physiological studies. We noted unexpected but significant differences in the growth behaviors of both strains. We sequenced the entire genomes of the original NZ9000 and MG1363 strains using an ultradeep sequencing strategy. The analysis of the L. lactis NZ9000 genome yielded 79 differences, mostly point mutations, with the annotated genome sequence of L. lactis MG1363. Resequencing of the MG1363 strain revealed that 73 out of the 79 differences were due to errors in the published sequence. Comparative transcriptomic studies revealed several differences in the regulation of genes involved in sugar fermentation, which can be explained by two specific mutations in a region of the ptcC promoter with a key role in the regulation of cellobiose and glucose uptake.
Project description:Proteinaceous bioactive substances and pharmaceuticals are most conveniently administered orally. However, the facing problems are the side effects of proteolytic degradation and denaturation in the gastrointestinal tract. In recent years, lactic acid bacteria (LAB) have been verified to be a promising delivery vector for susceptible functional proteins and drugs. KiSS-1 peptide, a cancer suppressor, plays a critical role in inhibiting cancer metastasis and its activity has been confirmed by direct administration. However, whether this peptide can be functionally expressed in LAB and exert activity on cancer cells, thus providing a potential alternative administration manner in the future, has not been demonstrated.A recombinant Lactococcus lactis strain NZ9000-401-kiss1 harboring a plasmid containing the gene of the tumor metastasis-inhibiting peptide KiSS1 was constructed. After optimization of the nisin induction conditions, the recombinant strain efficiently secreted KiSS1 with a maximum detectable amount of 27.9 ?g/ml in Dulbecco's Modified Eagle medium. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide and would healing assays, respectively, indicated that the secreted KiSS1 peptide remarkably inhibited HT-29 cell proliferation and migration. Furthermore, the expressed KiSS1 was shown to induce HT-29 cell morphological changes, apoptosis and reduce the expression of matrix metalloproteinase 9 (MMP-9) at both mRNA and protein levels.A recombinant L. lactis NZ9000-401-kiss1 successfully expressing the human kiss1 was constructed. The secreted KiSS1 peptide inhibited human HT-29 cells' proliferation and migration probably by invoking, or mediating the cell-apoptosis pathway and by down regulating MMP-9 expression, respectively. Our results suggest that L. lactis is an ideal cell factory for secretory expression of tumor metastasis-inhibiting peptide KiSS1, and the KiSS1-producing L. lactis strain may serve as a new tool for cancer therapy in the future.
Project description:Lactococcus lactis is subjected to several stressful conditions during industrial fermentation including oxidation, heating and cooling, acid, high osmolarity/dehydration and starvation. DNA lesion is a major cause of genetic instability in L. lactis that usually occurs at a low frequency, but it is greatly enhanced by environmental stresses. DNA damages produced by these environmental stresses are thought to induce DNA double-strand breaks, leading to illegitimate recombination. Nucleotide excision repair (NER) protein UvrA suppresses multiple stresses-induced illegitimate recombination. UvrA protein can survive a coincident condition of environmental harsh conditions, multiple stress factors supposedly encountered in the host and inducing UvrA in L. lactis. In this study the expression of UvrA and growth performance and viability of control strain L. lactisVector and recombinant strain L. lactisUvrA under multiple stress conditions were determined. The recombinants strain had 30.70 and 52.67% higher growth performances when subjected to acidic and osmotic stresses conditions. In addition, the L. lactisUvrA strain showed 1.85-, 1.65-, and 2.40-fold higher biomass, lactate production, and lactate productivity, compared with the corresponding values for L. lactisVector strain during the osmotic stress. Results demonstrated NER system is involved in adaptation to various stress conditions and suggested that cells with a compromised UvrA as DNA repair system have an enhanced protection behavior in L. lactis NZ9000 against DNA damage.
Project description:Our transcriptome data shows that the two-component system CesSR, which senses cell envelope stresses of different origins, is one of the major players when L. lactis is forced to overproduce the endogenous membrane protein BcaP, a branched-chain amino acid permease. Two-condition experiment: nisin induced overproduction of BcaP vs. control. Biological replicates: 2 controls, 2 overproduction cultures; independently grown and harvested; dye swaped on the second array.
Project description:Lactococcus lactis NZ9000 and its parent MG1363 are the most commonly used lactic acid bacteria for expression and physiological studies. We noted unexpected but significant differences in the growth behaviors of both strains. We sequenced the entire genomes of the original NZ9000 and MG1363 strains using an ultradeep sequencing strategy. The analysis of the L. lactis NZ9000 genome yielded 79 differences, mostly point mutations, with the annotated genome sequence of L. lactis MG1363. Resequencing of the MG1363 strain revealed that 73 out of the 79 differences were due to errors in the published sequence. Comparative transcriptomic studies revealed several differences in the regulation of genes involved in sugar fermentation, which can be explained by two specific mutations in a region of the ptcC promoter with a key role in the regulation of cellobiose and glucose uptake. MG1363 versus NZ9000 in 2 different culture media