Project description:Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury Forty-nine PBMC samples were obtained from 21 lSSc subjects without PAH (lSSc-noPAH), 15 lSSc subjects with PAH (lSSc-PAH), and 10 healthy controls; three subjects provided PBMCs one year later. Genome-wide gene expression was measured for each sample. Gene expression clearly distinguished lSSc samples from healthy controls, and separated lSSc-PAH from lSSc-NoPAH patients. The gene expression and cytokine profiles of lSSc-PAH patients suggest the presence of activated monocytes, and show markers of vascular injury and inflammation. Sample vs reference, total RNA isolated from peripheral blood mononuclear cells (PBMC), 21 lSSc subjects without PAH (lSSc-noPAH), 15 lSSc subjects with PAH (lSSc-PAH), and 10 healthy controls
Project description:Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury Forty-nine PBMC samples were obtained from 21 lSSc subjects without PAH (lSSc-noPAH), 15 lSSc subjects with PAH (lSSc-PAH), and 10 healthy controls; three subjects provided PBMCs one year later. Genome-wide gene expression was measured for each sample. Gene expression clearly distinguished lSSc samples from healthy controls, and separated lSSc-PAH from lSSc-NoPAH patients. The gene expression and cytokine profiles of lSSc-PAH patients suggest the presence of activated monocytes, and show markers of vascular injury and inflammation.
Project description:Comparison of miRNA expression between patients with idiopathic and systemic sclerosis PAH and healthy controls and systemic sclerosis without PAH
Project description:Pulmonary endothelial dysfunction plays an integral role in mediating the initiation and progression of pulmonary vascular remodelling, an important feature of pulmonary arterial hypertension (PAH). Our aim was to decipher the gene expression program of endothelial cells derived from circulating endothelial progenitor (EPCs) to gain insight into the pathological process of PAH associated with systemic sclerosis (SSc), which is the most extreme vascular phenotype of this disease. We used microarrays to investigate the gene expression profile in late outgrowth EPC-derived endothelial cells issued from SSc-PAH patients, in comparison with SSc patients without PAH and healthy controls.
Project description:Purpose:Pulmonary arterial hypertension secondary to congenital heart disease (CHD-PAH) with systemic-to-pulmonary shunt is characterized by proliferative vascular remodeling. Capillary morphogenesis gene-2 (CMG2) exhibits roles in cell proliferation and apoptosis. The purpose of this study was to determine the possible roles of CMG2 in the pathogenesis of systemic-to-pulmonary shunt induced PAH. Methods Lung tissue sections from CHD-PAH patients, systemic-to-pulmonary shunt induced PAH rat model, CMG2-/- rats, and PASMCs were used. Immunohistochemistry, real time polymerase chain reaction, Western blot, proliferation, apoptosis, and next generation sequencing (NGS) were performed in this study. Results CMG2 expression was reduced in lung tissues and pulmonary arterioles from Eisenmenger’s syndrome patient and rats with systemic-to-pulmonary shunt induced PAH. CMG2-/- rats exhibited heavier PAH and pulmonary vascular remodeling following exposure to systemic-to-pulmonary shunt for 8 weeks. Over-expression of CMG2 in cultured human PASMCs inhibited cell proliferation and promoted apoptosis, while knockdown of CMG2 promoted cell proliferation and inhibited apoptosis. A total of 1319 genes were found to be dysregulated in CMG2-/- rat lungs as detected by NGS. Biological processes influenced by these differentially expressed genes include regulation of blood vessel diameter, vasoconstriction, regulation of blood vessel size, vascular process in circulatory system, etc., and the most prominent pathway regulated is PI3K-Akt signaling pathway. Conclusion Our work identifies a novel role for CMG2 in systemic-to-pulmonary shunt induced PAH based on the findings that CMG2 deficiency could exacerbate systemic-to- pulmonary shunt induced vascular remodeling in the development of PAH. CMG2 may be a potential target for CHD-PAH treatment.
Project description:The hypothesis tested in this study was that chronic exposure of PBMCs to a hypertensive environment in remodeled pulmonary vessels would be reflected by specific transcriptional changes in these cells. The transcript profiles of PBMCs from 30 idiopathic pulmonary arterial hypertension patients (IPAH), 19 patients with systemic sclerosis without pulmonary hypertension (SSc), 42 scleroderma-associated PAH patients (SSc-PAH), and 8 patients with SSc complicated by interstitial lung disease and PH (SSC-PH-ILD) were compared to the gene expression profiles of PBMCs from 41 healthy individuals. Gene expression is compared at a global level using total RNA from BPMC for pateints and controls using the Illumina microarray platform.
Project description:The hypothesis tested in this study was that chronic exposure of PBMCs to a hypertensive environment in remodeled pulmonary vessels would be reflected by specific transcriptional changes in these cells. The transcript profiles of PBMCs from 30 idiopathic pulmonary arterial hypertension patients (IPAH), 19 patients with systemic sclerosis without pulmonary hypertension (SSc), 42 scleroderma-associated PAH patients (SSc-PAH), and 8 patients with SSc complicated by interstitial lung disease and PH (SSC-PH-ILD) were compared to the gene expression profiles of PBMCs from 41 healthy individuals.
Project description:Pulmonary arterial hypertension (PAH) is a severe and incurable pulmonary vascular disease. One of the primary origins of PAH is pulmonary endothelial dysfunction leading to vasoconstriction, aberrant angiogenesis and smooth muscle cell proliferation, endothelial-to-mesenchymal transition, thrombosis and inflammation. Our objective was to study the epigenetic variations in pulmonary endothelial cells (PEC) through a specific pattern of DNA methylation. DNA was extracted from cultured PEC from patients with idiopathic PAH (n=11), heritable PAH (n=10) and controls (n=18). ). DNA methylation was assessed using the Illumina HumanMethylation450 Assay. After normalization, samples and probes were clustered according to their methylation profile. Differential clusters were functionally analysed using bioinformatics tools.
Project description:Although multiple gene and protein expression have been extensively profiled in human pulmonary arterial hypertension (PAH), the mechanism for the development and progression of pulmonary hypertension remains elusive. Analysis of the global metabolomic heterogeneity within the pulmonary vascular system leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to increased ATP synthesis for the vascular remodeling process in severe pulmonary hypertension. These identified metabolites may serve as potential biomarkers for the diagnosis of severe PAH. By profiling metabolomic alterations of the PAH lung, we reveal new pathogenic mechanisms of PAH in its later stage, which may differ from the earlier stage of PAH, opening an avenue of exploration for therapeutics that target metabolic pathway alterations in the progression of PAH. Global profiles were determined in human lung tissue and compared across 11 normal and 12 severe pulmonary arterial hypertension patients. Using a combination of microarray and high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung.
Project description:Systemic sclerosis (SSc) is an autoimmune disease characterized by inflammation and fibrosis of the skin and internal organs. We sought to assess the clinical and molecular effects associated with response to intravenous abatacept in patients with diffuse cutaneous systemic sclerosis (dcSSc).