Project description:An Autonomous Underwater Vehicle (AUV) and large volume underwater pumps were used to collect microbial biomass from offshore waters of the Sargasso Sea, from surface waters and into the deep ocean. Seawater collection was performed along a transect in the western North Atlantic Ocean beginning near Bermuda and ending off the coast of Massachusetts, capturing metabolic signatures from oligotrophic, continental margin, and productive coastal ecosystems.
Project description:In this research we present a transcriptomics analysis of the physiological response of a marine calcifier, Strongylocentrotus purpuratus, to ocean acidification, a decline in ocean pH that results from the absorption of anthropogenic carbon dioxide (CO2). Larvae were raised from fertilization to prism stage in seawater with elevated CO2 conditions based upon IPCC emissions scenario B1 (540ppm CO2) and A1FI (1020ppm CO2).
Project description:Thiamine is often undetectable in ocean surface waters where Pelagibacter cells are numerically abundant. Despite this, Pelagibacter cells are missing de novo thiamine synthesis pathways. We show that an eogenous source of the thiamine precursor HMP is required for thiamine synthesis in Pelagibacter and that this precursor is abundant in the Sargasso sea. Batch cultures of P. ubique were grown in a defined arificial seawater media. Three cultures were given no thiamine amendment, and three other cultures received an excess concentration of thiamine. Cultures were harvested for microarray analyses just prior to and after thiamine limitation for the purpose of observing differences in gene expression related to thiamine limitation.
Project description:To test whether elevated CO2 , which drives seawater below pH 7.9, would shift the dynamical expression patterns diatoms in a more natural environment, we designed a controlled mesocosm study at Friday Harbor Laboratories (FHL) Ocean Acidification Environmental Laboratory (OAEL). Briefly, four independent mesocosm tanks were set up with continuous flow (10-12 mL/min) of filtered seawater from the Puget Sound to simulate mid-century (pH 7.9) and acidified oceanic conditions (pH 7.6) in duplicate. Mesocosm reservoirs were supplemented with nutrients and inoculated with T. pseudonana acclimated in FHL seawater. Mesocosms were outfitted with custom enclosures to simulate a 12:12 light:dark diel cycle. Cells for RNA extraction were sampled in the middle of the light and dark cycle and sequenced on Illumina NextSeq 500 platform.
2021-03-13 | GSE168812 | GEO
Project description:Bacterioplankton communities in the Drake Passage and the Southern Ocean
Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
Project description:The Antarctic krill provides central ecosystems services to the Southern Ocean grazing on autotroph and heterotoph diet and constituting the dominant food source for higher trophic levels. Moreover, E. superba's extensive equipment with biomacromolecule hydrolysing enzymes represents a largely untapped resource for applied purposes. The proteome compendium of krill provides a valuable basis for future studies on krill biology (e.g., metabolism, development, migration behaviour), for krill's contribution to organic matter turnover in the Southern Ocean, as well as for multilevel biotechnological prospecting.
Project description:The Antarctic krill provides central ecosystems services to the Southern Ocean grazing on autotroph and heterotoph diet and constituting the dominant food source for higher trophic levels. Moreover, E. superba's extensive equipment with biomacromolecule hydrolysing enzymes represents a largely untapped resource for applied purposes. The proteome compendium of krill provides a valuable basis for future studies on krill biology (e.g., metabolism, development, migration behaviour), for krill's contribution to organic matter turnover in the Southern Ocean, as well as for multilevel biotechnological prospecting.