Project description:Laminopathies are caused by mutations in components of the nuclear envelope (NE). While most NE components are widely expressed, laminopathies affect only a subset of tissues. However, the understanding of the molecular mechanisms that explain this phenomenon is still elusive. Here we have performed RNA-Seq analysis in adult C. elegans nematodes comparing gene expression in wild type and single and double mutants of two components of the NE, EMR-1 and LEM-2. Our data confirm that EMR-1 and LEM-2 facilitate gene repression and that both proteins control the expression of mainly muscle and neuronal genes. mRNA profiles of wild type, emr-1(gk119), lem-2(tm1582) and emr-1(RNAi) lem-2(tm1582) young adult worms were generated by deep sequencing, in triplicate for the wild type and duplicates for the other backgrounds, using Illumina GAIIx.
Project description:Gene content in various Enterococcus faecalis strains compared to E. faecalis V583. Strains have been compared to the V583 strain by comparative genomic hybridization using genome-wide PCR-based microarrays representing the V583 genome. Genes have been deemed "present" or "divergent" in the various strains.
Project description:Laminopathies are caused by mutations in components of the nuclear envelope (NE). While most NE components are widely expressed, laminopathies affect only a subset of tissues. However, the understanding of the molecular mechanisms that explain this phenomenon is still elusive. Here we have performed a genome wide DamID analysis in adult C. elegans nematodes comparing the DNA association profile of two components of the NE, Lamin/LMN-1 and Emerin/EMR-1. Although both proteins were associated to silent DNA, EMR-1 showed a predominant role in the anchoring of muscle and neuronal promoters to the nuclear periphery. Deletion of either EMR-1 or LEM-2, another integral NE protein, caused local changes in nuclear architecture with both increased and decreased LMN-1 association.
Project description:Laminopathies are caused by mutations in components of the nuclear envelope (NE). While most NE components are widely expressed, laminopathies affect only a subset of tissues. However, the understanding of the molecular mechanisms that explain this phenomenon is still elusive. Here we have performed a genome wide DamID analysis in adult C. elegans nematodes comparing the DNA association profile of two components of the NE, Lamin/LMN-1 and Emerin/EMR-1. Although both proteins were associated to silent DNA, EMR-1 showed a predominant role in the anchoring of muscle and neuronal promoters to the nuclear periphery. Deletion of either EMR-1 or LEM-2, another integral NE protein, caused local changes in nuclear architecture with both increased and decreased LMN-1 association. Comparison of Dam::LMN-1 and Dam::EMR-1 DNA assotiation in wild type strains and Dam::LMN-1 DNA association in wild type, lem-2(tm1582) and emr-1(gk119) mutant backgrounds.