Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:Anaerobic digestion (AD) is a core technology in management of urban organic wastes, converting a fraction of the organic carbon to methane and the residual digestate, the biorest, have a great potential to become a major organic fertilizer for agricultural soils in the future. At the same time, mitigation of N2O-emissions from the agricultural soils is needed to reduce the climate forcing by food production. Our goal was therefore to enrich for N2O reducing bacteria in AD digestates prior to fertilization, and in this way provide an avenue for large-scale and low-cost cultivation of strongly N2O reducing bacteria which can be directly introduced to agricultural soils in large enough volumes to alter the fate of nitrogen in the soils. Gas kinetics and meta-omics (metagenomics and metaproteomics) analyses of the N2O enriched digestates identified populations of N2O respiring organisms that grew by harvesting fermentation intermediates of the methanogenic consortium.
Project description:The anaerobic digestion microbiomes has been puzzling us since the dawn of molecular methods for mixed microbial community analysis. Monitoring of the anaerobic digestion microbiome can either take place via a holistic evaluation of the microbial community through fingerprinting or by targeted monitoring of selected taxa. Here, we compared four different microbial community fingerprinting methods, i.e., amplicon sequencing, metaproteomics, metabolomics and phenotypics, in their ability to reflect the full-scale anaerobic digestion microbiome. The phenotypic fingerprinting reflects a, for anaerobic digestion, novel, single cell-based approach of direct microbial community fingerprinting. Three different digester types, i.e., sludge digesters, digesters treating agro-industrial waste and dry anaerobic digesters reflected different operational parameters. The α-diversity analysis yielded inconsistent results, especially for richness, across the different methods. In contrast, β-diversity analysis resulted in comparable profiles, even when translated into phyla or functions, with clear separation of the three digester types. In-depth analysis of each method's features i.e., operational taxonomic units, metaproteins, metabolites, and phenotypic traits, yielded certain similar features yet, also some clear differences between the different methods, which was related to the complexity of the anaerobic digestion process. In conclusion, phenotypic fingerprinting is a reliable, fast method for holistic monitoring of the anaerobic digestion microbiome, and the complementary identification of key features through other methods could give rise to a direct interpretation of anaerobic digestion process performance.
Project description:In this study, microbial communities from triplicate leach-bed anaerobic bioreactors digesting grass were analysed. Each reactor comprised two microbial fractions, one immobilized on grass (biofilm) and the other in a planktonic state present in the leachate. Microbial communities from the two fractions were systematically investigated for community composition and function. This was carried out using DNA, RNA and protein co-extraction. The microbial structure of each fraction was examined using 16S rRNA deep sequencing, while the active members of the consortia were identified using the same approach on cDNA generated from co-extracted RNA samples. Microbial function was investigated using a metaproteomic workflow combining SDS-PAGE and LC-MS/MS analysis.
Project description:Two parallel anaerobic digestion lines were designed to match a "bovid-like" digestive structure. Each of the lines consisted of two Continuous Stirred Tank Reactors placed in series and separated by an acidic treatment step. The first line was inoculated with industrial inocula whereas the second was seeded with cow digestive tract contents. After three month of continuous sewage sludge feeding, samples were recovered for shotgun metaproteomic and DNA-based analysis. Strikingly, protein inferred and 16S rDNA tags based taxonomic community profiles were not fully consistent. Principal Component analysis however revealed a similar clustering pattern of the samples, suggesting that reproducible methodological and/or biological factors underlie this observation. The performances of the two digestion lines did not differ significantly and the cow derived inocula did not establish in the reactors. A low throughput metagenomic dataset (3.4x106 reads, 1.1 Gb) was also generated for one of the samples. It allowed a substantial increase of the analysis depth (increase of the spectral identification rate). For the first time, a high level of proteins expressed by members of the "Candidatus Competibacter" group is reported in an anaerobic digester, a key microbial player in environmental bioprocess communities.