Project description:Helicobacter pylori is a highly successful and important human pathogen that causes chronic gastritis, peptic ulcer diseases and gastric cancer. Innate immunity plays an important role of the primary defense against pathogens and epidemiological studies have suggested a role of toll-like receptor 1 (TLR1) in the risk of H. pylori acquisition. We performed microarray analysis of gastric mucosal biopsy specimens from H. pylori-positive and uninfected subjects; infection was associated with an ~15-fold up-regulation of TLR10 (p <0.001). Quantitative RT-PCR confirmed TLR10 mRNA levels were increased 3-fold in H. pylori-infection (p <0.001) and immunohistochemistory using anti-TLR10 polyclonal antibodies showed increased TLR10 expression in gastric epithelial cells of infected individuals. In vitro experiments where H. pylori was co-cultured with NCI-N87 gastric cells showed significant H. pylori-specific up-regulation of TLR10 mRNA levels and a correlation with TLR2 mRNA levels (R = 0.87, P <0.001). We compared combinations of TLRs for their ability to mediate NF-_B activation. NF-_B activation was increased following exposure to heat killed H. pylori or H. pylori-LPS only with the TLR2/TLR10 heterodimer. These findings suggest TLR10 is a functional receptor involved in the innate immune response to H. pylori infection and that TLR2/TLR10 heterodimer possibly functions in the recognition of H. pylori-LPS.
Project description:Helicobacter pylori colonizes the stomach of half of the world's population, causing a wide spectrum of disease ranging from asymptomatic gastritis to ulcers to gastric cancer. Although the basis for these diverse clinical outcomes is not understood, more severe disease is associated with strains harboring a pathogenicity island. To characterize the genetic diversity of more and less virulent strains, we examined the genomic content of 15 H. pylori clinical isolates by using a whole genome H. pylori DNA microarray. We found that a full 22% of H. pylori genes are dispensable in one or more strains, thus defining a minimal functional core of 1281 H. pylori genes. While the core genes encode most metabolic and cellular processes, the strain-specific genes include genes unique to H. pylori, restriction modification genes, transposases, and genes encoding cell surface proteins, which may aid the bacteria under specific circumstances during their long-term infection of genetically diverse hosts. We observed distinct patterns of the strain-specific gene distribution along the chromosome, which may result from different mechanisms of gene acquisition and loss. Among the strain-specific genes, we have found a class of candidate virulence genes identified by their coinheritance with the pathogenicity island. Keywords: other
Project description:Chronic infection of the human stomach with Helicobacter pylori leads to a variety of pathologic sequelae including peptic ulcer and gastric cancer, resulting in significant human morbidity and mortality. Several genes have been implicated in disease related to H. pylori infection including the vacuolating cytotoxin and the cag pathogenicity island. Other factors important for establishment and maintenance of infection include urease enzyme production, motility, iron uptake and stress response. We utilized a C57BL/6 mouse infection model to query a collection of 2400 transposon mutants in two different bacterial strain backgrounds for H. pylori genetic loci contributing to colonization of the stomach. Microarray based tracking of transposon mutants allowed us to monitor the behavior of transposon insertions in 758 different gene loci. Of the loci measured 223 (29%) had a predicted colonization defect. These include previously described H. pylori virulence genes, genes implicated in virulence in other pathogenic bacteria and 81 hypothetical proteins. We have retested 10 previously uncharacterized candidate colonization gene loci by making independent null alleles and confirmed their colonization phenotype using competition experiments and determination of the dose required for 50% infection. Of the genetic loci retested, 60% have strain specific colonization defects while 40% had phenotypes in both strain backgrounds for infection, highlighting the profound effect of H. pylori strain variation on the pathogenic potential of this organism. This SuperSeries is composed of the SubSeries listed below.
Project description:Helicobacter pylori (H. pylori) is a human pathogen that infects almost half of the world’s population. Infection with H. pylori is frequently associated with chronic gastritis and can even lead to gastric and duodenal ulcers and gastric cancer. Although the persistent colonization of H. pylori and the development of H. pylori-associated gastritis remain poorly understood, it is believed that, in gastric mucosa, the modulated gastric epithelial cells (GECs) by H. pylori are key contributors. We used microarrays to detail the global programme of gene expression in Helicobacter pylori infected-gastric epithelial cell line AGS cells and identified up-regulated genes induced by Helicobacter pylori infection.
Project description:Helicobacter pylori colonizes the stomach of half of the world's population, causing a wide spectrum of disease ranging from asymptomatic gastritis to ulcers to gastric cancer. Although the basis for these diverse clinical outcomes is not understood, more severe disease is associated with strains harboring a pathogenicity island. To characterize the genetic diversity of more and less virulent strains, we examined the genomic content of 15 H. pylori clinical isolates by using a whole genome H. pylori DNA microarray. We found that a full 22% of H. pylori genes are dispensable in one or more strains, thus defining a minimal functional core of 1281 H. pylori genes. While the core genes encode most metabolic and cellular processes, the strain-specific genes include genes unique to H. pylori, restriction modification genes, transposases, and genes encoding cell surface proteins, which may aid the bacteria under specific circumstances during their long-term infection of genetically diverse hosts. We observed distinct patterns of the strain-specific gene distribution along the chromosome, which may result from different mechanisms of gene acquisition and loss. Among the strain-specific genes, we have found a class of candidate virulence genes identified by their coinheritance with the pathogenicity island.
Project description:Sexual reproduction and recombination are essential for the survival of most eukaryotic populations. Until recently, the impact of these processes on the structure of bacterial populations has been largely overlooked. The advent of large-scale whole-genome sequencing and the concomitant development of molecular tools, such as microarray technology, facilitate the sensitive detection of recombination events in bacteria. These techniques are revealing that bacterial populations are comprised of isolates that show a surprisingly wide spectrum of genetic diversity at the DNA level. Our new awareness of this genetic diversity is increasing our understanding of population structures and of how these affect host?pathogen relationships. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set