Project description:The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. This SuperSeries is composed of the following subset Series:; GSE17643: Profiling of immortalized human lung epithelial cells following oncogenic KRAS expression and TBK1 suppression; GSE17671: Profiling of immortalized human lung epithelial cells following infection with oncogenic KRAS (G12V) Experiment Overall Design: Refer to individual Series
Project description:The purpose of the dataset is to analyze expression of genes induced by KRAS; The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. Experiment Overall Design: Profiling of KRAS activation (mutant), KRAS WT and control in AALE cells (Lundberg et al., Oncogene 2002;21:4577)
Project description:The purpose of the dataset is to analyze expression of genes induced by KRAS and regulated by TBK1; The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. Experiment Overall Design: Knock out of TBK1 in the contect of KRAS activation (mutant) and control (WT)
Project description:Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling Three biological replicates of primary lung adenocarcinoma cells derived from the Kras Lox-STOP-Lox-G12D;p53flox/flox (KP) mouse lung cancer model into which a doxycycline-inducible shRNA targeting Kras expressed from the 3’UTR of GFP was introduced (KP-KrasA cells) were analyzed at timepoints (days) D0, D4, and D21.
Project description:The purpose of the dataset is to analyze expression of genes induced by KRAS and regulated by TBK1 The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer.
Project description:The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. This SuperSeries is composed of the SubSeries listed below.
Project description:Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling. We used microarrays to compare gene expression in HCT116 cells in which we suppressed KRAS expression doxycycline-inducible shRNA targeting KRAS compared to cells treated with media alone (no shKRAS induced). We express KRAS, LacZ, and YAP1 in each condition to identify genes transcriptionally involved in the rescue of KRAS suppression. HCT116 cells harboring doxycycline-inducible shKRAS (HCTtetK) expressing either LacZ, KRAS, or YAP1, were treated with doxycycline for 30 hours to suppress KRAS. Untreated (no doxycycline) cells expressing each ORF were used as control. Total RNA was collected using PerfectPure RNA Cultured Cell Kit (5Prime) and expression profiling was performed on Human Genome U133A 2.0 Array (Affymetrix) using the Dana Farber Cancer Institute Microarray Core.
Project description:The purpose of the dataset is to analyze expression of genes induced by KRAS The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. An alternative strategy for targeting KRAS is to identify gene products that, when suppressed or inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF- B anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 as a potential therapeutic target in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer.
Project description:Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling