Project description:Time-course transcriptomic profilling of the oleaginous yeast Yarrowia lipolytica, during a controlled fed-batch. A nitrogen limitation was applied during the course of the fed-batch to initiate de novo biolipid synthesis.
Project description:Time-course transcriptomic profilling of the oleaginous yeast Yarrowia lipolytica, during a controlled fed-batch. A nitrogen limitation was applied during the course of the fed-batch to initiate de novo biolipid synthesis. Dual staining, one replicate per slide. On each slide, a time point sample and a reference sample are spotted. Reference samples were obtained by pooling the RNAs from the time-course samples.
Project description:Oleaginous yeasts are valuable systems for biosustainable production of hydrocarbon-based chemicals. Yarrowia lipolytica is one of the best characterized of these yeast with respect to genome annotation and flux analysis of metabolic processes. Nonetheless, progress is hampered by a dearth of genomewide tools enabling functional genomics. The Hermes DNA transposon was expressed to achieve saturation mutagenesis of the Y. lipolytica genome. Over 535 thousand independent insertions were identified by next-generation sequencing. Poisson analysis of insertion density classified ~22% of genes as essential. As expected, most essential genes not only have homologues in Saccharomyces cerevisiae and Schizosaccharomyces pombe, but the majority of those are also essential. As an obligate aerobe, Y. lipolytica has significantly more respiration - related genes that are classified as essential than do S. cerevisiae and S. pombe. The findings provide insights into biosynthetic pathways, compartmentalization of enzymes, and distinct functions of paralogs. Contributions of nonessential genes to fitness were determined in log growth cultures with glucose and glycerol carbon sources. Fluorescence-activated cell sorting identified mutants in which lipid accumulation is increased. Biological contributions of genes to growth were used to evaluate two recent genome-scale models Y. lipolytica metabolism. This study is the first functional genomic analysis of an oleaginous yeast and provides an important resource for modeling and bioengineering of Y. lipolytica.
Project description:Second part of the time-course transcriptomic profilling of the oleaginous yeast Yarrowia lipolytica, obtained during a controlled decellerostat (D-stat) setup. A nitrogen limitation was applied during the course of the D-stat to initiate and control de novo biolipid synthesis.
Project description:First part of the time-course transcriptomic profilling of the oleaginous yeast Yarrowia lipolytica, obtained during a controlled decellerostat (D-stat) setup. A nitrogen limitation was applied during the course of the D-stat to initiate and control de novo biolipid synthesis.
Project description:To extensively investigate the effect of Snf-1 on n-alkane assimilation in Y. lipolytica, we generated ∆Snf-1 strain using a homologous recombination method. The gene expression profilling analysis between wild-type and ∆Snf-1 strains were compared.
Project description:To investigate the mechanism by which the microalgae-yeast co-culture system promotes wastewater denitrification. We concluded that microalgae and yeast exhibit a mutually beneficial relationship in the co-culture system. Microalgae nitrogen metabolism can be influenced by both miRNA and mRNA, and the presence of yeast stimulates gene expression in microalgae.