Project description:Analysis of differential gene expression in human non-Hodgkin`s lymphoma cell lines and a primary leukaemic tumor sample of large cell anaplastic type in comparison with Hodgkin`s lymphoma cell lines and other non-Hodgkin`s lymphoma samples and non-neoplastic lymphocytes Keywords: cell type comparison
Project description:Analysis of differential gene expression in human non-Hodgkin`s lymphoma cell lines and a primary leukaemic tumor sample of large cell anaplastic type in comparison with Hodgkin`s lymphoma cell lines and other non-Hodgkin`s lymphoma samples and non-neoplastic lymphocytes Experiment Overall Design: Samples were analyzed to be compared to publically available data sets
Project description:This SuperSeries is composed of the following subset Series: GSE25986: Gene expression profiling of cell lines derived from classical Hodgkin lymphoma GSE25987: Gene expression profiling of Hodgkin lymphoma cell line KMH2: Comparison of CIITA-BX648577 knockdown cultures with non-silencing controls GSE25989: Copy number analysis of Hodgkin lymphoma cell lines KM-H2 and L-428 Refer to individual Series *** This submission represents the microarray gene expression and microarray copy number components of the study
Project description:Background Epigenetic changes are involved in the extinction of the B-cell gene expression program of classical Hodgkin lymphoma. However, little is known regarding epigenetic similarities between classical Hodgkin lymphoma and plasma cell myeloma cells, both of which share an extinction of the gene expression program of mature B-cells. Design and methods Global histone H3 acetylation patterns were determined in cell lines derived from classical Hodgkin lymphoma, plasma cell myeloma and B-cell lymphoma by chromatin immunoprecipitation and subsequent hybridization onto promoter tiling arrays. H3K27 trimethylation was analyzed by chromatin immunoprecipitation and real-time DNA-PCR for selected genes. Epigenetic modifications were compared to gene expression data. Results B-cell characteristic genes were hypoacetylated in classical Hodgkin lymphoma and plasma cell myeloma cell lines, as demonstrated by comparison of their histone H3 acetylation patterns to those of B-cell lines. However, the number of genes jointly hyperacetylated and expressed in classical Hodgkin lymphoma and plasma cell myeloma cell lines, such as IFR4/MUM1 and RYBP, is limited. Moreover, H3K27 trimethylation for selected B-cell characteristic genes revealed that this additional epigenetic silencing is much more prevalent in classical Hodgkin lymphoma as compared to plasma cell myeloma. Conclusion Our epigenetic data support the view that classical Hodgkin lymphoma is characterized by an abortive plasma cell differentiation with a down-regulation of B-cell characteristic genes but without activation of most plasma cell typical genes. Gene expression analysis of Hodgkin lymphoma (cHL) and B-cell lines: Microarray data for three Hodgkin lymphoma cell lines (KM-H2, L1236, L428) and the B-cell line Namalwa that were published previously by our group (GEO accession GSE8388) were analyzed together with newly generated data for the B-cell lines SU-DHL4 and SU-DHL6. For all cell lines, RNA was isolated according to standard protocols (Qiagen, Hilden, Germany) and used for Affymetrix GeneChip hybridization (HG-U133A). Microarrays were normalized using RMA, and differential expression was calculated using moderated t-test. The gene expression profiles of the cell lines were generated in duplicates.