Project description:We conducted genome-wide bisulfite sequencing analysis of the follicular lymphoma cell line RL and found that a large amount of methylated genes are polycomb target genes in ES cells. We therefore conducted a ChIP-chip experiment to determine the methylated genes that are bound by the polycomb protein Suz12. Although 28% of MRIs are PRC2 target genes in ES cells, our ChIP-on-Chip analysis showed that only 13% of MRIs are associated with H3K27Me3 marks and only 5% of the MRIs are bound by Suz12 in RL cells in vivo. Comparison of DNA methylation with histone modifications in RL cells.
Project description:We conducted genome-wide bisulfite sequencing analysis of the follicular lymphoma cell line RL and found that a large amount of methylated genes are polycomb target genes in ES cells. We therefore conducted a ChIP-chip experiment to determine the methylated genes that are bound by the polycomb protein Suz12. Although 28% of MRIs are PRC2 target genes in ES cells, our ChIP-on-Chip analysis showed that only 13% of MRIs are associated with H3K27Me3 marks and only 5% of the MRIs are bound by Suz12 in RL cells in vivo.
Project description:Follicular lymphoma (FL) is an indolent lymphoma associated with follicular center B cells, and typically contains the Bcl-2 chromosomal translocation t(14;18), which leads to overexpression of the anti-apoptotic intracellular protein Bcl-2. FLs are sensitive to chemotherapy; however, patient relapses occur and response duration becomes progressively shorter, with the majority of patients eventually dying from the disease. Enzastaurin (LY317615), an acyclic bisindolylmaleimide, was initially developed as an ATP-competitive selective inhibitor of PKC. We found, in agreement with recent reports, that enzastaurin inhibits cell proliferation and induces apoptosis. These results are consistent with decreased phosphorylation of the Akt pathway and its downstream targets. To provide new insights into the anti-tumor action of enzastaurin on non-Hodgkin lymphoma, we investigated its effects on gene expression profiles of the B cell lymphoma RL cell line by oligonucleotide microarray analysis. We identified a set of 41 differentially expressed genes, mainly involved in cellular adhesion, apoptosis, inflammation, and immune and defense responses. These observations provide new insights into the mechanisms involved in the induction of apoptosis by enzastaurin in B cell lymphoma cell lines, and identify possible pathways that may contribute to the induction of apoptosis. This series of microarray experiments contains the gene expression profiles of independent replicates of the B lymphoma RL cell line carrying t(14;18) before and after LY317615 treatment. 100 nanograms of total RNA were processed and fragmented. Biotin-labelled single-stranded DNA target was hybridized to the GeneChip® Gene 1.0 ST array following the Affymetrix manufacturer's instructions.
Project description:In this work, we generated hundreds of millions of Hi-C paired end sequence reads for three different human cells (RL follicular lymphoma cell line, primary tumor B-cells from an acute lymphoblastic leukemia patient, and MHH-CALL-4 B-cell acute lymphoblastic leukemia cell line) using the Hi-C technique. An in-house Bioinformatics software pipeline was developed and applied to map sequence reads to the human reference genome, producing a large data set of high-quality and high-resolution chromosome contacts. Our computational analysis on these data reveal some interesting properties of human genome conformation, including conformational conservation and variation of the genomes of different cells, intra- and inter-chromosomal interactions, aberrant chromosomal translocation, spatial gene clusters, spatial gene-gene interactions, and spatial gene-regulatory-element interaction. Furthermore, we derived spatial interactions between functional elements (genes, transcription factor binding sites) from the chromosomal interaction data. The data were then used to generate chromosome-/genome-wide gene-gene interaction networks, transcription factor binding site (TFBS) â TFBS networks, and gene-TFBS networks. Remarkably, the connectivity in both networks shows the hallmark features of scale-free networks, suggesting that spatial interactions of gene-gene, gene-TFBS, and TFBS-TFBS in a genome are far from random. Three different human cells (RL follicular lymphoma cell line, primary tumor B-cells from an acute lymphoblastic leukemia patient, and MHH-CALL-4 B-cell acute lymphoblastic leukemia cell line) were analyzed