Project description:Owing to the risk of insertional mutagenesis, viral transduction has been increasingly replaced by nonviral methods to generate induced pluripotent stem (iPS) cells. We report the use of âminicircleâ DNA, a vector type that is free of bacterial DNA and capable of high expression in cells. Here we use a single minicircle vector to generate transgene-free iPSCs from adult human adipose stem cells. (Note: Our Nature Methods publication included analysis of array data from GSM378832 (Foreskin), GSM378833-GSM378838 (JT-iPSC), and GSM378817-GSM378820 (H1, H7, H9, H13, H14) in conjunction with this series). Total RNA from human adipose stem cells (hASC, n = 3 replicate samples), hASC-derived iPS cells using lentiviral factors (lenti-iPSC, n = 3 replicate samples), and minicircle-derived human iPS cells (mc-iPSC, n = 3 subclones from adipose tissue of three individual patients) was hybridized to nine Affymetrix GeneChip Human Genome U133 Plus 2.0 Arrays.
Project description:Owing to the risk of insertional mutagenesis, viral transduction has been increasingly replaced by nonviral methods to generate induced pluripotent stem (iPS) cells. We report the use of ‘minicircle’ DNA, a vector type that is free of bacterial DNA and capable of high expression in cells. Here we use a single minicircle vector to generate transgene-free iPSCs from adult human adipose stem cells. (Note: Our Nature Methods publication included analysis of array data from GSM374067 and GSM374068 in conjunction with this series).
Project description:Owing to the risk of insertional mutagenesis, viral transduction has been increasingly replaced by nonviral methods to generate induced pluripotent stem (iPS) cells. We report the use of ‘minicircle’ DNA, a vector type that is free of bacterial DNA and capable of high expression in cells. Here we use a single minicircle vector to generate transgene-free iPSCs from adult human adipose stem cells. (Note: Our Nature Methods publication included analysis of array data from GSM378832 (Foreskin), GSM378833-GSM378838 (JT-iPSC), and GSM378817-GSM378820 (H1, H7, H9, H13, H14) in conjunction with this series).
Project description:ATAC-seq samples from 2 species and 2 cell types were generated to study cis-regulatory element evolution. Briefly, previously generated urinary stem cell derived iPS-cells (Homo sapiens) of 2 human individuals and fibroblast derived cynomolgus macaque iPSCs (Macaca fascicularis) of 2 individuals (Geuder et al. 2021) were differentiated to neural progenitor cells via dual-SMAD inhibition as three-dimensional aggregation culture (Chambers et al. 2009; Ohnuki et al. 2014). The NPC lines were cultured in NPC proliferation medium and passaged 2 - 4 times until they were dissociated and subjected to ATAC-seq together with the respective iPSC clones. ATAC-seq libraries were generated using the Omni-ATAC protocol (Corces et al. 2017) with minor modifications.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.