Project description:The mechanisms underlying age-associated memory impairment are not well understood. We have shown that the onset of memory disturbances in the aging brain is associated with altered hippocampal chromatin plasticity. During learning, aged mice display a specific deregulation of histone H4 lysine 12 (H4K12) acetylation. To analyze if deregulated H4K12 acetylation impacts on learning-induced gene-expression required for memory consolidation we performed a high-density oligonucleotide microarray to compare the entire hippocampal gene-expression profile of 3 and 16-month-old mice during memory consolidation.
Project description:Engrams are considered to be substrates for memory storage, and the functional dysregulation of the engrams leads to cognition impairment.However, the cellular basis for these maladaptive changes lead to the forgetting of memories remains unclear. Here we found that the expression of autophagy protein 7 (Atg7) mRNA was dramatically upregulated in aged DG engrams, and led to the forgetting of contextual fear memory and the activation of surrounding microglia.To determine mechanism by which autophagy in DG engrams activates the surrounding microglia, mice were co-injected AAV-RAM-Cre either with AAV-Dio-Atg7-Flag or AAV-Dio- EYFP in dorsal dentate gyrus to overexpress ATG7 in the DG memory engrams. Microglia were separated using magnetic-activated cell sorting and subjected to RNA-Seq in dorsal hippocampus .Bioinformatics analysis shown overexpression of Atg7 in dorsal DG memory engrams caused an increase in the expression of Tlr2 in the surrounding microglia.Depletion of Toll-like receptor 2/4 (TLR2/4) in DG microglia prohibited excessive microglial activation and synapse elimination induced by the overexpression of ATG7 in DG engrams, and thus prevented forgetting. Furthermore, the expression of Rac1, a Rho-GTPases which regulates active forgetting in both fly and mice, was upregulated in aged engrams. Optogentic activation of Rac1 in DG engrams promoted the autophagy of the engrams, the activation of microglia, and the forgetting of fear memory. Invention of the Atg7 expression and microglia activation attenuated forgetting induced by activation of Rac1 in DG engrams. Together, our findings revealed autophagy-dependent synapse elimination of DG engrams by microglia as a novel forgetting mechanism.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Comparison of gene expression profiles from Mus musculus brain (hippocampus) of animals kept in standard environment and enriched environment. The RNA-seq data comprise 4 groups: 2 age groups, each w/ and w/o enriched environment. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of gene expression profiles from Mus musculus brain (hemisphere) of animals kept in standard environment and enriched environment. The RNA-seq data comprise 4 groups: 2 age groups, each w/ and w/o enriched environment. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of gene expression profiles from Mus musculus brain at age 30 months. The RNA-seq data comprise 1 groups. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)