Project description:Microarray analysis of PBMC from cynomolgus macaques collected longitudinally over the course of infection with Lassa-Josiah, Lassa-Z132, Lassa-SorombaR, or Lujo viruses (n=3 animals/infection condition). 3 macaques from each group were infected intramuscularly with 10^4 PFU of Lassa-Josiah, Lassa-Z132, Lassa-SorombaR, or Lujo viruses. PBMC were collected at days 1, 4, 7, 10, 13, and 29 (for surviving animals). We performed microarray analysis on PBMC samples using Agilent rhesus macaque arrays on all samples, as well as on PBMC from 3 uninfected animals for use as a control.
Project description:Microarray analysis of PBMC from cynomolgus macaques collected longitudinally over the course of infection with Lassa-Josiah, Lassa-Z132, Lassa-SorombaR, or Lujo viruses (n=3 animals/infection condition).
Project description:Background: Prion diseases such as bovine spongiform encephalopathies (BSE) are transmissible neurodegenerative diseases which are presumably caused by an infectious conformational isoform of the cellular prion protein. Previous work has provided evidence that in murine prion disease the endogenous retrovirus (ERV) expression is altered in the brain. To determine if prion-induced changes in ERV expression are a general phenomenon we used a non-human primate model for prion disease. Results: Cynomolgus macaques (Macaca fasicularis) were infected intracerebrally with BSE-positive brain stem material from cattle and allowed to develop prion disease. Brain tissue from the basis pontis and vermis cerebelli of the six animals and the same regions from four healthy controls were subjected to ERV expression profiling using a retrovirus-specific microarray and quantitative real-time PCR. We could show that Class I gammaretroviruses HERV-E4-1, ERV-9, and MacERV-4 increase expression in BSE-infected macaques. In a second approach, we analysed ERV-K-(HML-2) RNA and protein expression in extracts from the same cynomolgus macaques. Here we found a significant downregulation of both, the macaque ERV-K-(HML-2) Gag protein and RNA in the frontal/parietal cortex of BSE-infected macaques. Conclusions: We provide evidence that dysregulation of ERVs in response to BSE-infection can be detected on both, the RNA and the protein level. To our knowledge, this is the first report on the differential expression of ERV-derived structural proteins in prion disorders. Our findings suggest that endogenous retroviruses may induce or exacerbate the pathological consequences of prion-associated neurodegeneration. Cynomolgus macaques (Macaca fasicularis) were infected intracerebrally with BSE-positive brain stem material from cattle and allowed to develop prion disease. Brain tissue from the basis pontis and vermis cerebelli of the six animals and the same regions from four healthy controls were subjected to ERV expression profiling using a retrovirus-specific microarray and quantitative real-time PCR. In a second approach, ERV-K-(HML-2) RNA and protein expression was analysed in extracts from the same cynomolgus macaques.
Project description:Infinium 450K is a hybridization array designed for the human genome, but the relative conservation between the macaque and human genomes makes its use in macaques feasible. We used the Infinium450K array to assay twelve Cynomolgus macaque muscle biopsies and compared it to Reduced Representation Bisulphite Sequencing (RRBS) data generated on the same samples. Muscle biopsies were performed on eleven adult male cynomologus macaques
Project description:Infinium 450K is a hybridization array designed for the human genome, but the relative conservation between the macaque and human genomes makes its use in macaques feasible. We used the Infinium450K array to assay twelve Cynomolgus macaque muscle biopsies and compared it to Reduced Representation Bisulphite Sequencing (RRBS) data generated on the same samples. Muscle biopsies were performed on eleven adult male cynomologus macaques
Project description:Relatively little is understood about the dynamics of global hostâpathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation, GAS GTPases and host fibrinolytic genes, and GAS response to interaction with neutrophils. We also identified a strong signal, suggesting interaction between host γδ T cells and genes in the GAS mevalonic acid synthesis pathway responsible for production of isopentenyl-pyrophosphate, a short-chain phospholipid that stimulates these T cells. Taken together, our Q:2 results are unique in providing a comprehensive understanding of the hostâpathogen interactome during mucosal infection by a bacterial pathogen. Longitudinal pharyngeal infection of cynomolgus macaques by group A Streptococcus Briefly, animals were GAS-culture negative and had negligible antistreptolysin O titers, indicating no recent history of GAS exposure. Twenty animals were subjected to a mock-inoculation protocol (PBS only) for 5 weeks, rested for 4 weeks, and inoculated in the upper respiratory tract with 107 CFUsMGAS5005. Blood, saliva, and throat swabs were collected on days 0, 1, 2, 4, 7, 9, 16, 23, 32, 45, 58, 72, and 86. Only the first nine time-points were studied because specimens collected during days 0 to 32 had matching comparator specimens from the mock-infection protocol. Thirty-two clinical and laboratory parameters were measured by the same veterinarian during mock and infection periods. Array data was only for the tonsil swabs, while blood and saliva used for other tests.