Project description:Cardiac fibroblasts (CF) are key players after myocardial infarction (MI), but their signaling is only incompletely understood. Here we report a first secretome atlas of CF in control (cCF) and post-MI mouse hearts (miCF), combining a rapid cell isolation technique with SILAC and click chemistry. In CF, numerous paracrine factors involved in immune homeostasis are identified. Comparing secretome, transcriptome (SLAMseq), and cellular proteome disclose protein turnover. In miCF at day 5 post-MI, significantly upregulated proteins include SLIT2, FN1, and CRLF1 in mouse and human samples. Comparing the miCF secretome at days 3 and 5 post-MI reveals the dynamic nature of protein secretion. Specific in-vivo labeling of miCF proteins via biotin ligase TurboID using the POSTN promotor mirrors the in-vitro data. In summary, we identify numerous paracrine factors specifically secreted from CF in mice and humans. This secretome atlas may lead to new biomarkers and/or therapeutic targets for the activated CF.
Project description:We have observed that DBA/2J and C57Bl6/N mice exhibit different responses to permanent coronary artery ligation, with mice in a C57 background having about a 14-fold increase in cardiomyocyte S-phase activity as compared to DBA mice. We mapped the responsible gene to the distal arm of Chromosome 3 in the C57 background. We then RNA-Seq analyses on hearts from normal and infarcted DBA and C57 mice, with the hope of identifying candidate genes within the region of interest on the distal arm of Chromosome 3 which are differentially expressed. These genes identified Tnni3k as a potential candidate contributing to the elevated S-phase phenotype.
Project description:This dataset is a time series (1 hour [h], 4 hours, 24 hours, 48 hours, 1 week [w], and 8 weeks) intended to compare normal functioning left ventricles [lv + lv2] with infarcted [ilv] and non-infarcted left ventricles [nilv]. ilv samples are taken from the region between the LAD artery and the apex on a mouse with myocardial infarction. Lv2 samples are from the same region in a sham operated mouse. Nilv samples are taken from the region above the infartion and the left ventricle [lv] samples mimic that region in a sham mouse. The lv and lv2 samples can be compared as both are from normal functioning hearts. For more information visit http://cardiogenomics.med.harvard.edu/groups/proj1/pages/mi_home.html
Project description:C57BL/6 J mice were subjected to ligation of the left anterior descending coronary artery. Ly6Chi macrophages and Ly6Clo macrophages were collected from infarcted hearts at 3 days after MI.
Project description:Myocardial infarction (MI) is the leading cause for hear failure (HF). Following MI, the non-infarcted region of left ventricle (LV) is critical for maintaining heart function, and disruption of the LV contributes greatly to post-MI HF. Transcriptomic profiling by high-throughput sequencing was performed in a chronic HF pig model, to explore the molecular changes in the post-MI LV related to cardiovascular deterioration. Samples were taken from heart tissue of MI-induced pigs and from control pigs not subjected to MI. Regions of the heart where samples were taken included the site of ischemia (LV ischemia), area bordering ischemia (LV border), area remote to ischemia (LV remote) and the right ventricle (RV).