Project description:Divergent adaptation can be associated with reproductive isolation in the process of speciation. We recently demonstrated the link between divergent adaptation and the onset of reproductive isolation in experimental populations of the yeast Saccharomyces cerevisiae evolved from a single progenitor in either a high-salt or a low-glucose environment. However, the genetic basis for adaptation and reproductive isolation remained unknown in this system. Here, we use whole-genome re-sequencing of representatives of three populations to identify 15 candidate mutations, six of which explained the adaptive increases in mitotic fitness in the two environments. In two populations evolved in high salt, two different mutations occurred in the proton efflux pump gene PMA1 and the global transcriptional repressor gene CYC8; the ENA genes encoding sodium efflux pumps were over-expressed once through expansion of this gene cluster and once as a result of the mutation in the regulator CYC8. In the population from low glucose, one mutation occurred in MDS3, which modulates growth at high pH, and one in MKT1, a global regulator of mRNAs encoding mitochondrial proteins, the latter recapitulating a naturally-occurring variant. A Dobzhansky-Muller (DM) incompatibility between the evolved alleles of PMA1 and MKT1 strongly depressed fitness in the low-glucose environment. This DM interaction is the first reported between experimentally evolved alleles of known genes and shows how reproductive isolation can arise rapidly when divergent selection is strong. Evolved and progenitor strains were grown in stressed and unstressed conditions to identify role of mutations in gene expression.
Project description:Divergent adaptation can be associated with reproductive isolation in the process of speciation. We recently demonstrated the link between divergent adaptation and the onset of reproductive isolation in experimental populations of the yeast Saccharomyces cerevisiae evolved from a single progenitor in either a high-salt or a low-glucose environment. However, the genetic basis for adaptation and reproductive isolation remained unknown in this system. Here, we use whole-genome re-sequencing of representatives of three populations to identify 15 candidate mutations, six of which explained the adaptive increases in mitotic fitness in the two environments. In two populations evolved in high salt, two different mutations occurred in the proton efflux pump gene PMA1 and the global transcriptional repressor gene CYC8; the ENA genes encoding sodium efflux pumps were over-expressed once through expansion of this gene cluster and once as a result of the mutation in the regulator CYC8. In the population from low glucose, one mutation occurred in MDS3, which modulates growth at high pH, and one in MKT1, a global regulator of mRNAs encoding mitochondrial proteins, the latter recapitulating a naturally-occurring variant. A Dobzhansky-Muller (DM) incompatibility between the evolved alleles of PMA1 and MKT1 strongly depressed fitness in the low-glucose environment. This DM interaction is the first reported between experimentally evolved alleles of known genes and shows how reproductive isolation can arise rapidly when divergent selection is strong.
Project description:Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining qPCR, array CGH, restriction digestion and CHEF gels, and whole genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. Over a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that are driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolve under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared to single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.
Project description:Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study the changes in the mutational landscape across populations during adaptation, we performed experimental evolutions on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining qPCR, array CGH, restriction, digestion and CHEF gels, and whole genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. Over a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that are driven by the coexistence of independent beneficial mutations. Segmental amplifications are rapidly gained under this selective pressure, including, common inverted amplifications containing the sulfate transporter gene SUL1. Detailed analysis of the populations uncovers a deep complexity where by multiple subpopulations arise and compete with each another. The most common trajectories to adaptation in these populations are incomplete soft sweeps, with adaptive variants replacing one another. These are CGH arrays. Each experiment compares the DNA content of an experimentally evolved strain with its ancestor.