Project description:We analysed gene expression profiles in dental follicle cells after 7 days of osteogenic differentiation with different inducers. Total RNAs were isolated from dental follicle cells after 7 days of differentiation with dexamethasone, BMP2, IGF2 and for control with standard cell culture medium
Project description:We analysed the genexpression of dental follicle cells (DFCs) after 3 days osteogenic differentiation with BMP2 after transfection with a DLX3 plasmid (pDLX3) and after transfection with an empty plasmid (pEV) Total RNAs were isolated from dental follicle cells after transfection with pDLX3 and pEV and osteogenic induction with BMP2 at day 3
Project description:We analysed the genexpression of dental follicle cells (DFCs) after 3 days osteogenic differentiation with BMP2 after transfection with a DLX3 plasmid (pDLX3) and after transfection with an empty plasmid (pEV)
Project description:We analysed gene expression profiles in dental follicle cells after seven days of ostoeogenic differentiation Total RNAs were isolated from dental stem cells at day 0 (before differentiation) and after 7 days of differentiation)
Project description:To evaluate the miRNA and mRNA expression profiles (miRNOME and transcriptome) we reconstructed networks identifying miRNAs and mRNA during in vitro osteogenic differentiation of human dental pulp stem cells (DPSC). The DPSCs were cultured in the DMEM + beta-glycerol phosphate, ascorbic acid and dexamethasone for 2 to 21 days. The microRNA or mRNA expression profiling during the differentiation process was analyzed through hybridizations with Agilent miRNA-microarray (8x15K format) or whole-human genome Agilent microarray (4x44K format).
Project description:Tooth pulp contains various types of cells such as endothelial cells, neurons, fibroblasts, osteoblasts, osteoclasts, and odontoblasts. As well as cells that are called "postnatal dental pulp stem cells" (DPSCs). Also, four more types of dental MSC-like populations were identified and characterized: stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), stem cells from the apical papilla (SCAP) and population of dental follicle-derived progenitor cells called "dental follicle progenitor cells" (DFPCs). Most of them might be used in wide range of biomedical applications. Nevertheless, they have systematic differences in their physiology, e.g. differences in proliferative and differentiation potential. These differences are not clearly defined on molecular level yet; therefore, we performed proteomics comparison of DPSCs and PDLSCs in control and osteogenic differentiation. Donor matched DPSCs and PDLSCs were isolated from two donors by standard protocol. Then, DPSCs and PDLSCs at passage 3 were seeded into 90 mm Petri dishes (Eppendorf) and cultured in standard conditions with DMEM (Gibco) supplemented with 15% fetal bovine serum (FBS), 37°C, 5% CO2. When cells reached 90-100% confluency, the medium was changed to osteogenic medium (DMEM supplemented with 10% FBS, 2 mM L-glutamine, 1% penicillin/streptomycin (HyClone), 50 mg/ml ascorbic acid (Sigma Aldrich), 0.1 mM dexamethasone (Sigma Aldrich) and 10 mM b–glycerophosphate (Sigma Aldrich).