Project description:The majority of Saccharomyces cerevisiae snoRNA promoters contain an aRCCCTaa sequence motif located at the upstream border of a TATA-containing nucleosome-free region. Genome-wide ChIP-seq analysis showed that these motifs are bound in vivo by Tbf1, a telomere-binding protein known to recognize mammalian-like T2AG3 repeats at sub-telomeric regions. Tbf1 has over 100 additional promoter targets, including the TBF1 gene itself. Tbf1 is required for full snoRNA expression, yet it does not influence nucleosome positioning at snoRNA promoters. Analysis of Tbf1-binding sites in Saccharomyces cerevisiae by ChIP-seq of a Myc-tagged strain and a control untagged strain. 1 sample per strain, 1 lane per sample.
Project description:The majority of Saccharomyces cerevisiae snoRNA promoters contain an aRCCCTaa sequence motif located at the upstream border of a TATA-containing nucleosome-free region. Genome-wide ChIP-seq analysis showed that these motifs are bound in vivo by Tbf1, a telomere-binding protein known to recognize mammalian-like T2AG3 repeats at sub-telomeric regions. Tbf1 has over 100 additional promoter targets, including the TBF1 gene itself. Tbf1 is required for full snoRNA expression, yet it does not influence nucleosome positioning at snoRNA promoters.
Project description:This SuperSeries is composed of the following subset Series: GSE18240: Saccharomyces cerevisiae cells: control vs positive supercoiling accumulation after 0, 30 and 120 min GSE18241: S. cerevisiae cells: control vs positive supercoiling accumulation in absence of telomere silencing after 0 and 120 min GSE18605: Saccharomyces cerevisiae cells: effect of Top2 depletion without accumulation of positive superhelical stress Refer to individual Series
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:We quantified the exact RNA binding sites of the Ssd1 protein in Saccharomyces cerevisiae, in exponential growth and heat shock conditions, using the CRAC protocol. We used a His-TEV-protein A tag (HTP) on the C-terminal of the genomic copy of Ssd1, with the 3'UTR replaced by the 3'UTR/terminator from the K. lactis Ssd1 homolog, followed by a KlURA3 selection marker.