Project description:ATAC-seq profiling of Nfat5 KO and wild type macrophages derived from bone marrow (primary cells), treated or not with Lipopolysaccharide (LPS).
Project description:To identify transcriptionally regulated genes in primary mouse macrophages stimulated with LPS with high sensitivity, we isolated nascent RNA following metabolic labelling with 4-thiouridine during the last 35 min before cell harvest, as recently described (Dolken et al. 2008 RNA 14:1959-72). Microarray analyses of nascent RNA identified substantially more probe sets as up-regulated after 45 min of LPS stimulation than parallel analyses of total cellular RNA. In contrast, 4.5 h after stimulation, up-regulated genes in total and nascent RNA largely overlapped. This approach therefore allowed a much more sensitive detection of early changes in transcription, and the respective genes are likely to be direct targets of LPS-regulated transcription factors. Keywords: Effect of LPS stimulation; comparison of changes in expression of total versus nascent RNA; timecourse Two completely independent experiments were performed. Macrophages were stimulated with 100 ng/ml LPS for 45 or 270 minutes. Thiouridine pulsing was done in last 35 minutes before harvest. Total RNA was isolated. Nascent RNA was subsequently purified.
Project description:proteome of LPS-stimulated macrophages in Il18-knockout mouse' liver and lung. proteome of LPS-stimulated macrophages in widetype mouse' liver and lung.
Project description:This is an investigation of whole genome gene expression level in tissues of mice stimulated by LPS, FK565 or LPS + FK565 in vivo and ex vivo. We show that parenteral administration of a pure synthetic Nod1 ligand, FK565, induces site-specific vascular inflammation in mice, which is prominent in aortic root including aortic valves, slight in aorta and absent in other arteries. The degree of respective vascular inflammation is associated with persistent high expression of proinflammatory chemokine/cytokine genes in each tissue in vivo by microarray analysis, and not with Nod1 expression levels. The ex vivo production of proinflammatory chemokine/cytokine by Nod1 ligand is higher in aortic root than in other arteries from normal murine vascular tissues, and also higher in human coronary artery endothelial cells (HCAEC) than in human pulmonary artery endothelial cells (HPAEC), suggesting that site-specific vascular inflammation is at least in part ascribed to an intrinsic nature of the vascular tissue/cell itself. A fourty chip study using total RNA recovered from four isolated tissues of mice which were stimulated by various reagents. Aortic root, pulmonary artery, aorta and spleen of mice in 3 groups: 1) intraperitoneal injection of 20M-NM-<g of LPS priming only, 2) oral administration of FK565 (100M-NM-<g) for consecutive days, 3) oral administration of FK565 (100M-NM-<g) for consecutive days 1 day after LPS priming, at day 2, 4, and 7. And six chip study using total RNA recovered from three isolated vascular tissues of mice which were stimulated by FK565 (10M-NM-<g/mL) ex vivo.