Project description:The toxicity of silver and zinc oxide nanoparticles is hypothesised to be mediated by dissolved metal ions and cerium dioxide nanoparticles (CeO2 NPs) are hypothesised to induce toxicity specifically by oxidative stress dependant on their surface redox state. To test these hypotheses, RNAseq was applied to characterise the molecular responses of cells to metal nanoparticle and metal ion exposures. The human epithelial lung carcinoma cell line A549 was exposed to different CeO2 NPs with different surface charges, micron-sized and nano-sized silver particles and silver ions, micron-sized and nano-sized zinc oxide particles and zinc ions, or control conditions, for 1 hour, 6 hours and 24 hours. Concentrations were the lower of either EC20 or 128 micrograms/mL. Transcriptional responses were characterised by RNAseq transcriptomics using an Illumina HiSeq2500 .
Project description:Silver nanoparticles cause toxicity in exposed organisms and are an environmental health concern. The mechanisms of silver nanoparticle toxicity, however, remain unclear. We examined the effects of exposure to silver in nano-, bulk- and ionic forms on zebrafish embryos (Danio rerio) using a Next Generation Sequencing approach in an Illumina platform (High-Throughput SuperSAGE). Significant alterations in gene expression were found for all treatments and many of the gene pathways affected, most notably those associated with oxidative phosphorylation and protein synthesis, overlapped strongly between the three treatments indicating similar mechanisms of toxicity for the three forms of silver studied. Changes in oxidative phosphorylation indicated a down-regulation of this pathway at 24h of exposure, but with a recovery at 48h. This finding was consistent with a dose-dependent decrease in oxygen consumption at 24h, but not at 48h, following exposure to silver ions. Overall, our data provide support for the hypothesis that the toxicity caused by silver nanoparticles is principally associated with bioavailable silver ions in exposed zebrafish embryos. These findings are important in the evaluation of the risk that silver particles may pose to exposed vertebrate organisms. mRNA profiles of whole zebrafish embryos at 24 and 48 hours post-fertilisation (hpf) exposed to silver in nano, bulk and ionic forms were generated by deep sequencing using HT-SuperSAGE (Illumina GA2).
Project description:Silver nanoparticles cause toxicity in exposed organisms and are an environmental health concern. The mechanisms of silver nanoparticle toxicity, however, remain unclear. We examined the effects of exposure to silver in nano-, bulk- and ionic forms on zebrafish embryos (Danio rerio) using a Next Generation Sequencing approach in an Illumina platform (High-Throughput SuperSAGE). Significant alterations in gene expression were found for all treatments and many of the gene pathways affected, most notably those associated with oxidative phosphorylation and protein synthesis, overlapped strongly between the three treatments indicating similar mechanisms of toxicity for the three forms of silver studied. Changes in oxidative phosphorylation indicated a down-regulation of this pathway at 24h of exposure, but with a recovery at 48h. This finding was consistent with a dose-dependent decrease in oxygen consumption at 24h, but not at 48h, following exposure to silver ions. Overall, our data provide support for the hypothesis that the toxicity caused by silver nanoparticles is principally associated with bioavailable silver ions in exposed zebrafish embryos. These findings are important in the evaluation of the risk that silver particles may pose to exposed vertebrate organisms.
Project description:To identify genes and pathways involved in AgNPs and Ag ion toxicity, mRNA microarray analysis was conducted on human Jurkat T cells. The results indicate that more DEGs were induced by AgNPs than by Ag ion and AgNPs induced gene expression were not clustered with control and Ag ion induced ones. DEG analysis indicated that metallothionein (MT) 2A, 1H, 1F, and 1A and endonucleases G like 1 (ENDOGL1) were upregulated by AgNPs exposure more than 2 folds compared to control. Jurkat T cells were exposed to 0.2 mg/L of AgNPs and Ag ions for 24 h. After treatment, total RNA was extracted and microarray was conducted on control, AgNPs treated and Ag ion treated Jurktat T cells. Microarray analysis were performed in triplicate. Jurkat T cells were exposed to 0.2 mg/L of AgNPs and Ag ions for 24 h. After treatment, total RNA was extracted and mi RNA microarray was conducted on control, AgNPs treated and Ag ion treated Jurktat T cells.
Project description:There is still a lot of contradiction on whether metal ions are solely responsible for the observed the toxicity of ZnO and CuO nanoparticles to aquatic species. While most tests have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at suborganismal levels may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO, CuO nanoparticles and zinc, copper salts was tested on the gene expression levels in Daphnia magna. D. magna was exposed during 96 hours to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for a differential gene expression analysis using microarray. When comparing the nanoparticle exposed daphnids (ZnO or CuO) to the metal salt exposed daphnids (zinc or copper salt), the microarray results showed no significantly differentially expressed genes. These results indicate that the toxicity of the tested ZnO and CuO nanoparticles to D. magna caused is solely caused by toxic metal ions.
Project description:There is still a lot of contradiction on whether metal ions are solely responsible for the observed the toxicity of ZnO and CuO nanoparticles to aquatic species. While most tests have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at suborganismal levels may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO, CuO nanoparticles and zinc, copper salts was tested on the gene expression levels in Daphnia magna. D. magna was exposed during 96 hours to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for a differential gene expression analysis using microarray. When comparing the nanoparticle exposed daphnids (ZnO or CuO) to the metal salt exposed daphnids (zinc or copper salt), the microarray results showed no significantly differentially expressed genes. These results indicate that the toxicity of the tested ZnO and CuO nanoparticles to D. magna caused is solely caused by toxic metal ions.
Project description:Custom D. magna gene expression microarray (Design ID: 023710, Agilent Technologies)were used to characterise gene expression profiles of Daphnia magna neoantes exposed to silver nanoparticles ( AgNPs ) or silver nitrate ( AgNO3 ) for 24 hours.
Project description:Nanoparticles are compounds of emerging concern with largely unknown risks for human and ecological health. It is crucial to evaluate their potential biological impact to prevent unintended adverse effects on human health and the environment. We analyzed the transcriptional effects of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) and silver nitrate (AgNO3) on the fathead minnow (Pimephales promelas) to understand their potential toxicity and adverse outcomes. We also tested the feasibility of the fathead minnow as an alternative species to elucidate potential adverse effects on humans. Fathead minnow females were exposed to either 4 µg/L of AgNO3 or 70 µg/L of PVP-AgNPs for 96h. Microarray analyses were performed on liver and brain. Functional analysis identified potential toxicity pathways and molecular initiating events (MIEs) that were confirmed with functional assays. Data suggested that AgNO3 and PVP-AgNPs had both common and distinct transcriptional effects. The nanoparticles were linked to neurotoxicity and oxidative stress, and identified as a dopamine receptor antagonist. Silver nitrate was also identified as a potential neurotoxicant and was confirmed as adrenergic and cannabinoid receptors antagonist. While silver nitrate and PVP-AgNPs were both potential neurotoxicants, they appeared to act through different MIEs. Fathead minnow is a promising alternative species to elucidate potential adverse effects of relevance to human health. We analyzed the transcriptional effects of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) and silver nitrate (AgNO3) on the fathead minnow (Pimephales promelas) to understand their potential toxicity and adverse outcomes. FHM were obtained from Aquatic Biosystems (Fort Collins, CO), held in aerated dechlorinated tap water and fed three times daily with Zeigler® AquaTox Feed Gardners, PA, USA). Fathead minnow females were exposed to either 4 µg/L of AgNO3 or 70 µg/L of PVP-AgNPs (Luna Innovations, Blackburn, VA) for 96h at 24°C ± 1 with a 90% water change at 48 hours. Microarray analyses were performed on liver and brain.
Project description:Silver exposure is toxic to fish due to disturbances of normal gill function. A proposed toxicity mechanism of silver nanoparticles (AgNP) is derived from the release of silver ions, similar to silver nitrate (AgNO3). However, some datasets support the fact that AgNP can have unique toxic effects that are mediated at the gill. To determine if differences between AgNO3 and AgNP toxicities exist, fathead minnows were exposed to 20 nm PVP- or citrate-coated silver nanoparticles (PVP-AgNP; citrate-AgNP) at the nominal concentration of 200 μg/L or AgNO3 at nominal 6 μg/L for 96 hr. This nominal concentration was applied to approximate the dissolved fraction of Ag in the AgNP suspensions. Mucus production in the water was measured. While mucus production was initially significantly increased in the first 4 h of exposure in all silver treatments compared to control, a decrease in mucus production was observed following 24-96 h of exposure. To determine which genes/pathways are driving this shift in mucus production, gills were dissected and microarray analysis was performed. Hierarchal clustering of differentially expressed genes revealed that all samples distinctly clustered by treatment. There were 109 differentially expressed genes shared among all Ag treatments compared to controls. However, there were 185, 423, and 615 differentially expressed genes unique to AgNO3, PVP-AgNP, and citrate-AgNP, relative to control. While functional analysis indicated several common enriched pathways, such as aryl hydrocarbon receptor signaling, this analysis also indicated some unique pathways between nanosilver and AgNO3. Our results show that AgNO3, PVP-AgNP, and citrate-AgNP exposure affected mucus production in fish gills and also lead to common and unique transcriptional changes.
Project description:Nanoparticles are compounds of emerging concern with largely unknown risks for human and ecological health. It is crucial to evaluate their potential biological impact to prevent unintended adverse effects on human health and the environment. We analyzed the transcriptional effects of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) and silver nitrate (AgNO3) on the fathead minnow (Pimephales promelas) to understand their potential toxicity and adverse outcomes. We also tested the feasibility of the fathead minnow as an alternative species to elucidate potential adverse effects on humans. Fathead minnow females were exposed to either 4 µg/L of AgNO3 or 70 µg/L of PVP-AgNPs for 96h. Microarray analyses were performed on liver and brain. Functional analysis identified potential toxicity pathways and molecular initiating events (MIEs) that were confirmed with functional assays. Data suggested that AgNO3 and PVP-AgNPs had both common and distinct transcriptional effects. The nanoparticles were linked to neurotoxicity and oxidative stress, and identified as a dopamine receptor antagonist. Silver nitrate was also identified as a potential neurotoxicant and was confirmed as adrenergic and cannabinoid receptors antagonist. While silver nitrate and PVP-AgNPs were both potential neurotoxicants, they appeared to act through different MIEs. Fathead minnow is a promising alternative species to elucidate potential adverse effects of relevance to human health.