Project description:We were interested in investigating the transcriptome responses to exogenous applications of brassinosteroid hormone when Arabidopsis seedlings are pre-stressed with a reactive oxygen species, hydrogen peroxide. We were interested in seeing which subsets of BR-responsive gene transcripts were most affected and how BR-responsive gene transcripts responded to increasing concentrations of hydrogen peroxide both as a whole and individually. Liquid culture Arabidopsis seedlings are grown under standard conditions. Hydrogen peroxide is added at various concentrations to pre-stress the seedlings. Following this pretreatment, the seedlings are then treated with brassinosteroid (BR) hormone (epi-brassinolide, BL). Following this treatment, seedlings are harvested and total RNA is extracted for genome-wide transcriptome analysis.
Project description:We were interested in investigating the transcriptome responses to exogenous applications of brassinosteroid hormone when Arabidopsis seedlings are pre-stressed with a reactive oxygen species, hydrogen peroxide. We were interested in seeing which subsets of BR-responsive gene transcripts were most affected and how BR-responsive gene transcripts responded to increasing concentrations of hydrogen peroxide both as a whole and individually.
Project description:We found that auxin stimulates gene expression of DWF4, which encodes a rate-dertermining step in brassinosteroid biosynthesis pathways. This increased gene expressioin subsequently led to elevation of the biosynthetic flux in Arabidopsis roots. To determine the list of genes that are regulated by auxin-synthesizing brassinosteroids, we challenged Arabidopsis seedlings with either auxin only or auxin plus brassinosteroid biosynthetic inhibitor brassinazole. Keywords: Hormone treatment
Project description:Moderate increases in the ambient temperature promote hypocotyl growth in Arabidopsis, and this response is totally dependent on the proper activity of the auxin, gibberellin, and brassinosteroid pathways. We have analyzed global the changes in gene expression that occur in Arabidopsis seedlings after a moderate increase in the growth temperature (20ºC to 29ºC for 2 hours). In order to understand how the different hormone pathways affect this growth response, the same transcription profiling analysis was conducted in seedlings deficient in each hormone. Keywords: Growth condition
Project description:Auxin is a major plant hormone for both development and environmental adaptation. Auxin responses are context dependent and highly modulated by light, temperature, the circadian clock, brassinosteroid, and gibberellin, but the underlying mechanisms remain unclear. Here, we show that auxin signaling integrates with other signals through direct interactions of AUXIN RESPONSE FACTOR6 (ARF6) with PHYTOCHROME INTERACTING FACTOR4 (PIF4), the brassinosteroid-signaling transcription factor BZR1, and the gibberellin-signaling repressor RGA. ChIP-Seq and RNA-Seq experiments show that ARF6, PIF4, and BZR1 bind to largely overlapping targets in the genome and synergistically activate gene expression. In vitro and in vivo assays show that ARF6-promoter binding is enhanced by PIF4 and BZR1 but blocked by RGA. Furthermore, a tripartite HLH/bHLH module feedback regulates PIF activity and thus modulates auxin sensitivity according to additional developmental and environmental cues. Our results demonstrate a central growth-regulation transcriptional network that coordinates hormonal, environmental, and developmental control of cell elongation and plant growth. Genome-wide identification of ARF6 DNA-binding sites in etiolated Arabidopsis seedlings.
Project description:We used the flu mutant of Arabidopsis to detail gene expression in response to singlet oxygen. The conditional flu mutant of Arabidopsis accumulates excess protochlorophyllide in the dark within chloroplast membranes that upon illumination acts as a photosensitizer and generates singlet oxygen. Immediately after the release of singlet oxygen mature flu plants stop growing, whereas seedlings bleach and die. Within the first 30 min after the release of singlet oxygen rapid changes in nuclear gene expression occur. Distinct sets of genes were activated that were different from those induced by other reactive oxygen species, superoxide or hydrogen peroxide. Keywords: Time course
Project description:We used the flu mutant of Arabidopsis and a transgenic line that overexpresses the thylakoid-bound ascorbate peroxidase (tAPX) to address the interactions between different reactive oxygen species (ROS) signaling pathways. The conditional flu mutant of Arabidopsis accumulates excess protochlorophyllide in the dark within chloroplast membranes that upon illumination acts as a photosensitizer and generates singlet oxygen (1O2). Immediately after the release of singlet oxygen rapid changes in nuclear gene expression occur. Distinct sets of genes were activated that were different from those induced by other reactive oxygen species, superoxide or hydrogen peroxide (H2O2), suggesting that different types of active oxygen species activate distinct signaling pathways. It was not known whether the pathways operate separately or interact with each other. We have addressed this problem by modulating noninvasively the level of H2O2 in plastids by means of a transgenic line that overexpresses the thylakoid-bound ascorbate peroxidase (tAPX, line 14/2 PMID: 15165186). In the flu mutant overexpressing tAPX, the expression of most of the nuclear genes that were rapidly activated after the release of 1O2 was significantly higher in flu plants overexpressing tAPX, whereas in wild-type plants, overexpression of tAPX had only a very minor impact on nuclear gene expression. The results suggest that H2O2 antagonizes the 1O2-mediated signaling of stress responses as seen in the flu mutant. This cross-talk between H2O2- and 1O2-dependent signaling pathways might contribute to the overall stability and robustness of wild-type plants exposed to adverse environmental stress conditions. Keywords: Single time point comparison
Project description:The trade-off between growth and immunity is crucial for survival in plants. An antagonistic interaction has been observed between the growth-promoting hormone brassinosteroid and pathogen associated molecular pattern (PAMP) signals, which induce immunity but inhibit growth, however the underlying molecular mechanism has remained unclear. The PRE-IBH1-HBI1 triple helix-loop-helix/basic helix-loop-helix (HLH/bHLH) cascade has been shown to mediate growth responses to several hormonal and environmental signals, but its downstream targets and role in immunity remain unknown. Here, we performed genome-wide analyses of HBI1 target genes in Arabidopsis. The results show that HBI1 regulates a set of genes that largely overlaps with targets of PIFs, but displays both similar and unique transcriptional activities compared to PIFs, supporting a role in fine-tuning the network through cooperation and antagonism with other DNA-binding factors of the network. Furthermore, HBI1 also negatively regulates a subset of defense response genes. Two PAMPs, flagellin and elongation factor, repressed HBI1 expression, whereas overexpression of HBI1 reduced the PAMP-induced growth inhibition, defense gene expression, reactive oxygen species (ROS) production, and flg22-induced resistance to Pseudomonas syringae pathovar tomato DC3000. These data indicate that HBI1 is a node for crosstalk between hormone and immune pathways. This study demonstrates that the PRE-IBH1-HBI1 module integrates hormone and pathogen signals, and thus plays a central role in the balance between growth and immunity in plants. Genome wide analysis the HBI1 binding target
Project description:The trade-off between growth and immunity is crucial for survival in plants. An antagonistic interaction has been observed between the growth-promoting hormone brassinosteroid and pathogen associated molecular pattern (PAMP) signals, which induce immunity but inhibit growth, however the underlying molecular mechanism has remained unclear. The PRE-IBH1-HBI1 triple helix-loop-helix/basic helix-loop-helix (HLH/bHLH) cascade has been shown to mediate growth responses to several hormonal and environmental signals, but its downstream targets and role in immunity remain unknown. Here, we performed genome-wide analyses of HBI1 target genes in Arabidopsis. The results show that HBI1 regulates a set of genes that largely overlaps with targets of PIFs, but displays both similar and unique transcriptional activities compared to PIFs, supporting a role in fine-tuning the network through cooperation and antagonism with other DNA-binding factors of the network. Furthermore, HBI1 also negatively regulates a subset of defense response genes. Two PAMPs, flagellin and elongation factor, repressed HBI1 expression, whereas overexpression of HBI1 reduced the PAMP-induced growth inhibition, defense gene expression, reactive oxygen species (ROS) production, and flg22-induced resistance to Pseudomonas syringae pathovar tomato DC3000. These data indicate that HBI1 is a node for crosstalk between hormone and immune pathways. This study demonstrates that the PRE-IBH1-HBI1 module integrates hormone and pathogen signals, and thus plays a central role in the balance between growth and immunity in plants. Compare the transcriptome of HBI1-Ox and wild type.
Project description:Plants acquire essential elements from inherently heterogeneous soils, in which phosphate and iron availabilities vary. Consequently, plants developed adaptive strategies to cope with low iron and low phosphate levels, including alternation between root growth enhancement and attenuation. How this adaptive response is achieved remains unclear. Here, we found that low iron accelerates the root growth of Arabidopsis thaliana by activating brassinosteroid signaling, whereas low-phosphate-induced high iron accumulation inhibited it. Altered hormone signaling intensity also modulated iron accumulation in the root elongation and differentiation zones, constituting a feedback response between brassinosteroid and iron. Surprisingly, the early effect of low iron levels on root growth required the brassinosteroid receptor but the hormone ligand was negligible. The brassinosteroid receptor inhibitor BKI1, the transcription factors BES1/BZR1 and the ferroxidase LPR1, stood at the base of this feedback loop. Hence, shared brassinosteroid and iron regulatory components link nutrient status to root morphology, thereby driving the adaptive response.