Project description:The essential thiol antioxidant, glutathione (GSH) is recruited into the nucleus of mammalian cells early in cell proliferation, suggesting a key role of the nuclear thiol pool in cell cycle regulation. However, the functions of nuclear GSH (GSHn) and its integration with the cytoplasmic GSH (GSHc) pools in whole cell redox homeostasis and signaling are unknown. Here we show that GSH is recruited into the nucleus early in cell proliferation in Arabidopsis thaliana, confirming the requirement for localization of GSH in the nucleus as a universal feature of cell cycle regulation. GSH accumulation in the nucleus was triggered by treatments that synchronize cells at G1/S as identified by flow cytometry and marker transcripts. Significant decreases in transcripts associated with oxidative signaling and stress tolerance occurred when GSH was localized in the nucleus. Increases in GSH1 and GSH2 transcripts accompanied the large increase in total cellular GSH observed during cell proliferation, but only GSH2 was differentially expressed in cells with high GSHn relative to those with an even intracellular distribution of GSH. Of the 7 Bcl-2 associated (BAG) genes in A. thaliana, only the nuclear-localized BAG 6 was differentially expressed in cells with high GSHn compared to GSHc. We conclude that GSHn is associated with decreased oxidative signaling and stress responses and that whole cell redox homeostasis is restored as the cell cycle progresses by enhanced GSH synthesis and accumulation in the cytoplasm. Arabidopsis cells were harvested at points during cell proliferation where GSH was localized either in the nucleus (GSHn) or where GSH was distributed throughout the cytoplasm (GSHc) for RNA extraction and hybridization on Affymetrix microarrays. We selected three stages where the GSH was into the nucleus and three stages where the GSH was distributed throughout the cells.
Project description:The essential thiol antioxidant, glutathione (GSH) is recruited into the nucleus of mammalian cells early in cell proliferation, suggesting a key role of the nuclear thiol pool in cell cycle regulation. However, the functions of nuclear GSH (GSHn) and its integration with the cytoplasmic GSH (GSHc) pools in whole cell redox homeostasis and signaling are unknown. Here we show that GSH is recruited into the nucleus early in cell proliferation in Arabidopsis thaliana, confirming the requirement for localization of GSH in the nucleus as a universal feature of cell cycle regulation. GSH accumulation in the nucleus was triggered by treatments that synchronize cells at G1/S as identified by flow cytometry and marker transcripts. Significant decreases in transcripts associated with oxidative signaling and stress tolerance occurred when GSH was localized in the nucleus. Increases in GSH1 and GSH2 transcripts accompanied the large increase in total cellular GSH observed during cell proliferation, but only GSH2 was differentially expressed in cells with high GSHn relative to those with an even intracellular distribution of GSH. Of the 7 Bcl-2 associated (BAG) genes in A. thaliana, only the nuclear-localized BAG 6 was differentially expressed in cells with high GSHn compared to GSHc. We conclude that GSHn is associated with decreased oxidative signaling and stress responses and that whole cell redox homeostasis is restored as the cell cycle progresses by enhanced GSH synthesis and accumulation in the cytoplasm.
Project description:GSH, being a versatile molecule, is actively involved in various bilogical processe of plant system. Our previous studies identifies an active role of GSH in plant defense signaling network. Here, we used microarray under GSH treated condition to obtain a global expression profiling under this altered GSH conditions. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes during this process. A.thaliana, much accalimed model system of plant biology and being fully sequenced, we used this system to explore the specific relation of GSH with metabolic processes, phisiological conditions, etc.
Project description:GSH, being a versatile molecule, is actively involved in various bilogical processe of plant system. Our previous studies identifies an active role of GSH in plant defense signaling network. Here, we used microarray under GSH treated condition to obtain a global expression profiling under this altered GSH conditions.
Project description:Reduced glutathione (GSH) is required for cell cycle initiation and auxin-regulated root meristem development. Transcriptome profiling of the roots and shoots of the root meristemless 1 (rml1) mutant, which has about 3% of the wild type GSH, revealed a divergent auxin and strigolactone response linked to the arrest of the cell cycle.
Project description:Reduced glutathione (GSH) is required for cell cycle initiation and auxin-regulated root meristem development. Transcriptome profiling of the roots and shoots of the root meristemless 1 (rml1) mutant, which has about 3% of the wild type GSH, revealed a divergent auxin and strigolactone response linked to the arrest of the cell cycle. Plants of the rml1 mutant and Columbia-0 ecotype were harvested and separated into roots and shoots, then RNA extraction and Affymetrix Agronomics Tiling Array were performed.
Project description:To comprehensively investigate the effects of glutathione on the gene expression, the microarray analysis was performed in the glutathione-fed wild-type Arabidopsis thaliana. Wild-type Arabidopsis (ecotype Columbia-0) were fed with 1 mM oxidized glutathione (GSSG) and 2 mM reduced glutathione (GSH) for comparison at equal nitrogen equivalents. To examine the effects of glutathione other than nitrogen at equal nitrogen equivalents, plants were fed with 3 mM NH4NO3. Plants grown by water were used as a control.