Project description:The environment plays important role in the interaction between plant hosts and pathogens. The application of chemical fertilizer is a crucial breeding technology to enhance crop yield since last century. As the most abundant fertilizer, nitrogen often increases disease susceptibility for crop plants. The underlying mechanism for nitrogen induced disease susceptibility is elusive. Here we found that nitrogen application activate gibberellin signaling by degradation of SLR1, the repressor protein in gibberellin signaling, which result in simultaneously promoting plant growth and disease susceptibility. SLR1, physically interacts with OsNPR1 and consequently facilitate OsNPR1 mediated defense responses. Transcriptome analysis showed that OsNPR1-SLR1 module plays a vital role in transcriptional reprogramming for both disease resistance and plant growth. Increase of SLR1 protein level in gibberellin deficient rice plants neutralizes disease susceptibility but sacrifice yield enhancement under high nitrogen supply. Mutation in SD1, encoding OsGA2ox2, produced more grains than WT,and maintains disease resistance under high nitrogen supply. Taken together, our work reveals the molecular mechanism underlying nitrogen-induced disease susceptibility, and demonstrates that the application of sd1 rice varieties prevent the tradeoff between disease susceptibility and yield increase under high nitrogen supply.
2024-08-01 | GSE171646 | GEO
Project description:Rotation crop
| PRJNA951626 | ENA
Project description:Designing crop rotation schemes with plant-soil feedbacks
Project description:The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is an important pest of corn (Zea mays) in the US. Annual crop rotation between corn and soybean (Glycine max) disrupts the corn-dependent WCR lifecycle and was widely adopted to manage WCR. However, this strategy selected for a rotation-resistant (RR) variant with reduced ovipositional fidelity to cornfields. Previous studies indicated that RR-WCR adults exhibit greater tolerance of soybean tissue diet, different gut physiology, and host-microbe interactions compared to wild-types (WT). To identify genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses on RNA libraries from different WCR phenotypes (RR and WT) fed with corn or soybean diets. Differential gene expression analyses and network-based methods were used to identify gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses on these modules were then conducted to understand their potential functions and biological importance. Differential gene expression analyses on RNA libraries from adult guts of different WCR phenotypes (rotation-resistant and wild-type) fed with corn or soybean diets
Project description:The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is an important pest of corn (Zea mays) in the US. Annual crop rotation between corn and soybean (Glycine max) disrupts the corn-dependent WCR lifecycle and was widely adopted to manage WCR. However, this strategy selected for a rotation-resistant (RR) variant with reduced ovipositional fidelity to cornfields. Previous studies indicated that RR-WCR adults exhibit greater tolerance of soybean tissue diet, different gut physiology, and host-microbe interactions compared to wild-types (WT). To identify genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses on RNA libraries from different WCR phenotypes (RR and WT) fed with corn or soybean diets. Differential gene expression analyses and network-based methods were used to identify gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses on these modules were then conducted to understand their potential functions and biological importance.
Project description:Forming symbiotic associations with beneficial microbes are important strategies for sessile plants to acquire nitrogen and phosphorus nutrients from the soil. Root exudates play key roles on set-up of the rhizosphere microbiome. According to the needs for nitrogen or phosphorus, plants can adjust the root exudates composition to attract proper microbes. Flavonoids are a group of secondary metabolites that are well studied in shaping the root microbiome, especially the root nodule symbiosis in legumes. Here, we show the medicago truncatula phosphate sensors SPX1 and SPX3 regulate flavonoids biosynthesis to recruit nitrogen-fixing microbes for nitrogen acquisition. Nitrogen-fixing microbes were less recruited in spx1spx3 double mutant root rhizosphere. This was caused by lower flavonoids biosynthesis related genes expression, which resulted in lower flavonoids levels in the root exudates compared to wild type plant R108. Further analysis indicates the regulation of flavonoids biosynthesis is through the SPX1 and SPX3 interaction transcription factor PHR2. We propose the SPX-PHR phosphate homeostasis regulation network also control microbe-dependent nitrogen acquisition according to phosphate levels. Thus, SPX1 and SPX3 play important roles to keep a microbe-dependent nitrogen and phosphorus absorption balance for optimal growth.
Project description:Nitrogen availability in the soil is a major determinant of crop yield. While the application of fertilizer can substantially increase the yield on poor soils, it also causes nitrate pollution of water resources and high costs for farmers. Increasing the nitrogen use efficiency in crop plants is a necessary step to implement low input agricultural systems. We exploited the genetic diversity present in the world-wide Arabidopsis thaliana population to study adaptive growth patterns and changes in gene expression associated with chronic low nitrate stress, with the aim to identify biomarkers associated with good plant performance under low nitrate availability. Transcription and epigenetic factors were identified as important players in the adaptatiion to limited nitrogen in a global gene expression analysis using the Affymetrix ATH1 chip.