Project description:Expression diversity of P. ramorum isolates belonging to the NA1 clonal lineage growing on solid CV8 was examined. It was found that although all the analyzed isolates belonged to a single clonal lineage, expression patterns were distinctive between isolates originating from coast live oak and California bay laurel. Global expression patterns of 13 isolates originating from coastal live oak and California bay laurel was investigated. No biological replicates were generated. The sequenced strain Pr102 was included. Gene models Phytophthora ramorum v1.0 were used to construct NimbleGen 72K x4 custom arrays.
Project description:Expression diversity of P. ramorum isolates belonging to the NA1 clonal lineage growing on solid CV8 was examined. It was found that although all the analyzed isolates belonged to a single clonal lineage, expression patterns were distinctive between isolates originating from coast live oak and California bay laurel.
Project description:Expression diversity of P. ramorum isolates belonging to the NA1 clonal lineage growing on solid CV8 was examined. We found that phenotypes and transcriptomes change when isolates were passing through oak trees.
Project description:Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to particular physiological characteristics, no treatments against diseases caused by oomycetes are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. The present project is focused on the molecular mechanisms that underlie the compatible plant-oomycete interaction and plant disease. The laboratory developed a novel interaction system involving the model plant, Arabidopsis thaliana, and Phytophthora parasitica, a soil-borne pathogen infecting a wide host range, thus representing the majority of Phytophthora species. A characteristic feature of the compatible Arabidopsis/P. parasitica interaction is an extended biotrophic phase, before infection becomes necrotrophic. Because the initial biotrophic phase is extremely short on natural (e.g. solanaceous) hosts, the Arabidopsis system provides the opportunity to analyze, for both interaction partners, the molecular events that determine the initiation of infection and the switch to necrotrophy. The present project aims at analyzing the compatible interaction between A. thaliana roots and P. parasitica. The Affymetrix A. thaliana full genome chip will be used to characterize modulations of the transcriptome occurring over a period of 24h from the onset of plant root infection to the beginning of necrotrophy. Parallel to this study, a custom-designed P. parasitica biochip will enable analyzing of P. parasitica gene expression during the same stages. 10 samples were used in this experiment.
Project description:Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to particular physiological characteristics, no treatments against diseases caused by oomycetes are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. The present project is focused on the molecular mechanisms that underlie the compatible plant-oomycete interaction and plant disease. The laboratory developed a novel interaction system involving the model plant, Arabidopsis thaliana, and Phytophthora parasitica, a soil-borne pathogen infecting a wide host range, thus representing the majority of Phytophthora species. A characteristic feature of the compatible Arabidopsis/P. parasitica interaction is an extended biotrophic phase, before infection becomes necrotrophic. Because the initial biotrophic phase is extremely short on natural (e.g. solanaceous) hosts, the Arabidopsis system provides the opportunity to analyze, for both interaction partners, the molecular events that determine the initiation of infection and the switch to necrotrophy. The present project aims at analyzing the compatible interaction between A. thaliana roots and P. parasitica. The Affymetrix A. thaliana full genome chip will be used to characterize modulations of the transcriptome occurring over a period of 24h from the onset of plant root infection to the beginning of necrotrophy. Parallel to this study, a custom-designed P. parasitica biochip will enable analyzing of P. parasitica gene expression during the same stages.