Project description:We used long-oligonucleotide microarrays to investigate whether alternative splicing in Drosophila is regulated in a sex-, stage-, or tissue-specific manner. To examine sex-specific splicing, we compared gene expression profiles of male and female pupae 12 hours after pupariation. To examine stage-specific splicing, we compared expression profiles of mixed-sex, 0-24 hour old embryos and mixed-sex, 12 hour old pupae. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens 24-48 hours after eclosion. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens at 24-48 hours after eclosion. Keywords: tissue-specific expression profiles
Project description:We used long-oligonucleotide microarrays to investigate whether alternative splicing in Drosophila is regulated in a sex-, stage-, or tissue-specific manner. To examine sex-specific splicing, we compared gene expression profiles of male and female pupae 12 hours after pupariation. To examine stage-specific splicing, we compared expression profiles of mixed-sex, 0-24 hour old embryos and mixed-sex, 12 hour old pupae. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens 24-48 hours after eclosion. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens at 24-48 hours after eclosion. Keywords: tissue-specific expression profiles Drosophila isogenic line WI89 was used. Mixed-sex, mixed-stage embryos were harvested from plates on which females had been allowed to oviposit for 24 hours. To obtain synchronized cohorts of pupae, male and female white prepupae were collected at 0-1 hour after pupariation and aged for 12 hours at 25C. Mixed-sex pupal samples were generated by mixing equal amount of male and female pupal RNA. Adult heads and abdomens were dissected from 24-48 hour old males. mRNA was isolated and labeled without amplification.
Project description:<p>Chronic sleep loss profoundly impacts metabolic health and shortens lifespan, but studies of the mechanisms involved have focused largely on acute sleep deprivation. To identify metabolic consequences of chronically reduced sleep, we conducted unbiased metabolomics on heads of three adult Drosophila short-sleeping mutants with very different mechanisms of sleep loss: fumin (fmn), redeye (rye), and sleepless (sss). Common features included elevated ornithine and polyamines, with lipid, acyl-carnitine, and TCA cycle changes suggesting mitochondrial dysfunction. Studies of excretion demonstrate inefficient nitrogen elimination in adult sleep mutants, likely contributing to their polyamine accumulation. Increasing levels of polyamines, particularly putrescine, promote sleep in control flies but poison sleep mutants. This parallels the broadly enhanced toxicity of high dietary nitrogen load from protein in chronically sleep-restricted Drosophila, including both sleep mutants and flies with hyper-activated wake-promoting neurons. Together, our results implicate nitrogen stress as a novel mechanism linking chronic sleep loss to adverse health outcomes-and perhaps for linking food and sleep homeostasis at the cellular level in healthy organisms.</p>
Project description:High-throughput sequencing of Drosophila melanogaster small RNAs. Total RNA, ~18-26nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf Small RNAs were sequenced from D. melanogaster (Canton S) wandering late embryos, first instar larvae, third instar larvae or from 2-4 day old pupae and adult female heads or male heads. Raw sequences were clipped by 3' linker sequences recognition, and select clipped sequences longer than 18 nt.