Project description:OBJECTIVES:Low genetic diversity can lead to reduced average fitness in a population or even extinction. Preserving genetic connectivity across fragmented landscapes is therefore vital to counteract the negative consequences of genetic drift and inbreeding. This study aimed to assess the genetic composition and consequently the conservation status of a nationwide sample of European hedgehogs (Erinaceus europaeus) in Denmark. METHODS:We applied an adaptation of the genotyping by sequencing (GBS) technique to 178 individuals from six geographically distinct populations. We used a Bayesian clustering method to subdivide individuals into genetically distinct populations. We estimated individual observed (iHO), observed (HO), and unbiased expected (uHE) heterozygosity, inbreeding coefficient (FIS), percentage of polymorphic loci (P%) and tested for deviations from Hardy-Weinberg equilibrium (HWE). We used linear models to test for potential anthropogenic effects on the genetic variability of hedgehogs with iHO, uHE, P% and FIS as response variables, and assessed the demographic history of the population. RESULTS:The Danish hedgehog population is composed of three genetic clusters. We found a mean P% of 54.44-94.71, a mean uHE of 0.126-0.318 and a mean HO of 0.124-0.293 in the six populations. The FIS was found to be significantly positive for three of the six populations. We detected a large heterogeneity of iHO values within populations, which can be due to inbreeding and/or fragmentation. FIS values decreased with increasing farmland density, but there was no significant association with human population or road density. CONCLUSIONS:We found a low level of genetic variability and evidence for genetic substructure and low effective population size, which are all consequences of habitat fragmentation. We failed to detect signs of a recent population bottleneck or population increase or decline. However, because the test only identifies recent changes in population size, we cannot reject the possibility of a longer-term decline in the Danish hedgehog population.
Project description:BackgroundThe European hedgehog (Erinaceus europaeus) is known for high levels of ectoparasitism that not only represents a health risk for the animals themselves, but also for pet animals and humans as hedgehogs are frequently taken into human care. In the present study, patterns of ectoparasite infestation were assessed in hedgehogs taken into care at northern German animal rehabilitation centres.MethodsEctoparasites (ticks, fleas and mites) of 498 hedgehogs were collected over a period of 3 years from July 2018 to May 2021. Species were identified based on morphological characteristics and also via amplification and sequencing of the partial cytochrome c oxidase subunit 2 (COX-2) gene for fleas of the family Ceratophyllidae. Seasonal changes in infestation patterns as well as correlations with animal age, body weight and health status were assessed using generalised linear models.ResultsInfestation with ticks, fleas and mites occurred throughout the year. Overall, 86.5% (431/498) of the examined hedgehogs were infested with ticks, 91.4% (455/498) with fleas and 17.7% (88/498) with mites. Ixodes ricinus and Ixodes hexagonus/Ixodes canisuga were the most common tick species detected, with the additional occurrence of one Ixodes frontalis. Significant seasonal changes were observed for I. ricinus, but not for I. hexagonus/I. canisuga. Additionally, I. ricinus nymph prevalence declined significantly as of 2020, probably as a consequence of the climate change-related drought as of 2018. In hedgehogs with flea infestations, Archaeopsylla erinacei, Ceratophyllus sciurorum, Nosopsyllus fasciatus and Ctenocephalides felis were identified. In all cases of mite infestation, Caparinia tripilis was detected, in addition to specimens of the family Macronyssidae and free-living mites of the family Acaridae. Statistical analyses showed correlations regarding the factors month, year, body weight and age, but no correlation was evident regarding the health status of the animals.ConclusionsWith a detected infestation rate of 98.6%, almost all of the examined hedgehogs were infested with at least one ectoparasite species. The seasonal activity patterns of the different ectoparasite species together with the complex annual cycle of hedgehogs lead to different seasonal patterns in ectoparasite prevalence and infestation intensities. Due to the risk of transmission of zoonotic pathogens as well as the possible negative impact on the host itself, hedgehogs should be treated against ectoparasites when taken into care facilities.
Project description:The European hedgehog (Erinaceus europaeus Linnaeus) frequently colonises areas located close to human life in cities, as these are more suitable nest sites offering an abundance of food and allowing avoidance of predators. However, urbanisation has a significant impact on the epidemiology of infectious diseases, including dermatophytoses, the primary source of which are wild animals. In this study, we determined the spectrum of dermatophytes isolated from the European hedgehog and assessed their susceptibility profile to antifungal drugs. Symptomatic and asymptomatic dermatophyte infections were observed in 7.7% and 8% of the 182 examined free-living hedgehogs, respectively. In the pool of the isolated dermatophyte strains, Trichophyton erinacei was dominant (29.9%), followed by Trichophyton mentagrophytes (17.9%), Trichophyton benhamiae (13.4%), Nannizzia gypsea (11.9%), Microsporum canis (10.4%), Nannizzia nana (7.5%), Paraphyton cookei (6.0%), and Nannizzia fulva (3.0%). Susceptibility tests revealed the highest activity of luliconazole and the lowest of activity fluconazole among the azole drugs applied. Although terbinafine generally exhibited high efficacy, two Trichophyton mentagrophytes isolates showed resistance to this drug (MIC = 2 µg/ml) resulting from missense mutations in the SQLE gene corresponding to the amino acid substitution Leu393Phe. Summarising, our study has also revealed that such wildlife animals as hedgehogs can be a reservoir of pathogenic human dermatophytes, including harmful strains resistant to commonly used antifungal drugs.
Project description:The European hedgehog, Erinaceus europaeus, is frequently admitted to rescue centres in the UK. With many overwintering in captivity, there is cause to investigate hibernation patterns in order to inform and improve husbandry and monitoring protocols. Thirty-five hedgehogs were studied over two winters. Weight change during hibernation for the first winter was used to test for effects of disturbance on different aspects of hibernation, including total duration, frequency and duration of spontaneous arousals. There was no significant difference between the two winters for any of the four aspects studied. Significant positive correlations demonstrated that weight-loss increased with the duration of the hibernation period and with percent of nights spent asleep, but not with the number of arousal events. Thus, weight-loss appears more strongly associated with the proportion of time spent asleep than with the number of arousal events. This was surprising given the assumed energetic expense of repeated arousal and was potentially due to availability of food during arousals. In contrast with previous studies, larger hedgehogs lost less weight per day than did smaller hedgehogs. They also woke up more often (i.e., had more opportunities to feed), which may explain the unexpected pattern of weight-loss. Hibernatory behaviour in captivity differs from that in the wild, likely because of non-natural conditions in hutches and the immediate availability of food. This study provides a basis for further research into the monitoring and husbandry of hedgehogs such that it can be adapted for each individual according to pre-hibernation weight and behaviour during hibernation.
Project description:European hedgehog (Erinaceus europaeus) populations are widespread across diverse habitats but are declining in Western Europe. Drastic declines have been described in the UK, with the most severe declines occurring in rural areas. Hedgehogs are widely distributed in Denmark, but their status remains unknown.Fieldwork on hedgehogs has tended to focus on rural areas, leaving their ecology in suburban habitats largely unexplored, with clear implications for conservation initiatives. Here, we study the ecology of 35 juvenile hedgehogs using radio tracking during their first year of life in the suburbs of western Copenhagen.We use radio-tracking data to estimate (a) home range sizes in autumn and spring/summer, (b) survival during their first year of life, (c) the body mass changes before, during, and after hibernation, and (d) the hibernation behavior of the juvenile hedgehogs.We show that males and females have small home ranges compared with previous studies. The 95% MCP home range sizes in autumn were 1.33 ha (95% CI = 0.88-2.00) for males and 1.40 ha (95% CI = 0.84-2.32) for females; for spring/summer they were 6.54 ha (95% CI = 3.76-11.38) for males and 1.51 ha (95% CI = 0.63-3.63) for females. The juvenile survival probabilities during the study period from September 2014 to July 2015 were .56 for females and .79 for males. All healthy individuals gained body mass during the autumn and survived hibernation with little body mass loss thus demonstrating that the juveniles in the study were capable of gaining sufficient weight in the wild to survive their first hibernation.The climate is changing, but there is a lack of knowledge on how this affects mammal ecology. The exceptionally mild autumn of 2014 caused the juvenile hedgehogs to delay hibernation for up to a month compared with previous studies in Denmark.