Project description:The mechanisms and molecular pathways underlying interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches were used to identify perturbed networks in these disease states to gain a better understanding of the underlying mechanisms of disease. Through profiling genes and miRNAs, we found subsets of genes and miRNAs that distinguish different disease stages, ILDs from controls, and idiopathic pulmonary fibrosis (IPF) from non-specific interstitial pneumonitis (NSIP). Traditional pathway analysis revealed several disease-associated modules involving genes from the TGF-beta, Wnt, focal adhesion and smooth muscle actin pathways that may be involved in advancing fibrosis. A comprehensively integrative approach was used to construct a global gene regulatory network based on the perturbation of key regulatory elements, transcriptional factors and miRNAs. The data also demonstrated that several subnetworks were significantly associated with key molecules involved in the diseases. We present a broad overview of the disease at a molecular level and discuss several possibly key regulatory molecular circuits that could play central roles in facilitating the progression of ILDs. Lung tissue samples from 23 patients with IPF or related disorders were obtained from the Lung Tissue Research Consortium (www.ltrcpublic.org). 11 samples came from patients who had been diagnosed with usual interstitial pneumonia/ idiopathic pulmonary fibrosis (UIP/IPF), 5 samples came from patients with non-specific interstitial pneumonia (NSIP), the remaining from patients with uncharacterized fibrosis and from patients with other ILD variants. B. Biopsies from uninvolved lung tissue from lung cancer patients (5 samples) and from one lung transplant patient were used as controls for comparison with the ILD samples.
Project description:The mechanisms and molecular pathways underlying interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches were used to identify perturbed networks in these disease states to gain a better understanding of the underlying mechanisms of disease. Through profiling genes and miRNAs, we found subsets of genes and miRNAs that distinguish different disease stages, ILDs from controls, and idiopathic pulmonary fibrosis (IPF) from non-specific interstitial pneumonitis (NSIP). Traditional pathway analysis revealed several disease-associated modules involving genes from the TGF-beta, Wnt, focal adhesion and smooth muscle actin pathways that may be involved in advancing fibrosis. A comprehensively integrative approach was used to construct a global gene regulatory network based on the perturbation of key regulatory elements, transcriptional factors and miRNAs. The data also demonstrated that several subnetworks were significantly associated with key molecules involved in the diseases. We present a broad overview of the disease at a molecular level and discuss several possibly key regulatory molecular circuits that could play central roles in facilitating the progression of ILDs. Lung tissue samples from thirty patients with IPF or related disorders were obtained from the Lung Tissue Research Consortium (www.ltrcpublic.org). Ten samples came from patients who had been diagnosed with usual interstitial pneumonia/ idiopathic pulmonary fibrosis (UIP/IPF), nine samples came from patients with non-specific interstitial pneumonia (NSIP), four from patients with uncharacterized fibrosis, and the remaining samples came from patients with other ILD variants. Biopsies from uninvolved lung tissue from lung cancer patients (5 samples) and from one lung transplant patient were used as controls for comparison with the ILD samples.
Project description:The mechanisms and molecular pathways underlying interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches were used to identify perturbed networks in these disease states to gain a better understanding of the underlying mechanisms of disease. Through profiling genes and miRNAs, we found subsets of genes and miRNAs that distinguish different disease stages, ILDs from controls, and idiopathic pulmonary fibrosis (IPF) from non-specific interstitial pneumonitis (NSIP). Traditional pathway analysis revealed several disease-associated modules involving genes from the TGF-beta, Wnt, focal adhesion and smooth muscle actin pathways that may be involved in advancing fibrosis. A comprehensively integrative approach was used to construct a global gene regulatory network based on the perturbation of key regulatory elements, transcriptional factors and miRNAs. The data also demonstrated that several subnetworks were significantly associated with key molecules involved in the diseases. We present a broad overview of the disease at a molecular level and discuss several possibly key regulatory molecular circuits that could play central roles in facilitating the progression of ILDs.
Project description:The mechanisms and molecular pathways underlying interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches were used to identify perturbed networks in these disease states to gain a better understanding of the underlying mechanisms of disease. Through profiling genes and miRNAs, we found subsets of genes and miRNAs that distinguish different disease stages, ILDs from controls, and idiopathic pulmonary fibrosis (IPF) from non-specific interstitial pneumonitis (NSIP). Traditional pathway analysis revealed several disease-associated modules involving genes from the TGF-beta, Wnt, focal adhesion and smooth muscle actin pathways that may be involved in advancing fibrosis. A comprehensively integrative approach was used to construct a global gene regulatory network based on the perturbation of key regulatory elements, transcriptional factors and miRNAs. The data also demonstrated that several subnetworks were significantly associated with key molecules involved in the diseases. We present a broad overview of the disease at a molecular level and discuss several possibly key regulatory molecular circuits that could play central roles in facilitating the progression of ILDs.
Project description:Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic progressive fibrosing interstitial pneumonia leading to progressive dyspnea and finally death.The classic diagnosis of IPF is based on the histological pattern of usual interstitial pneumonia (UIP).we have no information about the molecular events that characterize the progression of IPF in the human lung. Understanding the molecular changes that characterize the progression of IPF from early, through progressive changes and into end-stage would allow development of therapeutic strategies that address the disease in all of its stages.In this study we applied a systems biology approach to model dynamic molecular changes during the progression of IPF in the human lung by using a unique resource of carefully characterized, differentially affected regions in human lungs.
Project description:The response to a 4 hour treatment with TGFbeta (4 ng/ml) was evaluated in lung fibroblasts derived from three controls (normal periphery of resected tumor), open lung biopsies from three patients with idiopathic pulmonary fibrosis (usual interstitial pneumonia pattern on biopsy) and from three patients with fibrosing alveolitis associated with systemic sclerosis (fibrotic non specific interstitial pneumonia pattern on biopsy). Lung fibroblasts were grown to confluence in DMEM with 10% fetal calf serum. At confluence, lung fibroblasts were serum-deprived overnight, and exposed to either 4 ng/ml of activated TGF-Ã1 (R&D Systems) or serum-free culture medium with 0.1% BSA for four hours.
Project description:Interstitial lung diseases (ILDs) such as idiopathic pulmonary fibrosis (IPF) is diffuse parenchymal lung disorders characterized by varying degrees of inflammation and fibrosis of the lung interstitium. The failure of lung alveolar regeneration in IPF is critical for this incurable disease. Here we report that chronic lung injury causes a profibrotic phenotype of alveolar macrophages that release extracellular vehicles (EVs) to promote PF development through repressing the stemness traits of type 2 alveolar epithelial cells (AEC2s). We found that an increased expression of acetylases KAT5 interacts with and acetylates protein kinase MLKL, which directly promotes release of EVs from AMs following chronic lung injury. AEC2s takes up the EVs and releases miR-148a-3p to repress expression of endogenous b-catennin agonist Wnt10b and alveolar regeneration. Pharmacologic inhibition of the miR-148a-3p expression or interruption of the KAT5-MLKL interaction restores regenerative capacity of AEC2s and exhibits potent therapeutic efficacy against PF. Our study confers a potential strategy for the treatment of IPF and other interstitial lung diseases.
Project description:The response to a 4 hour treatment with TGFbeta (4 ng/ml) was evaluated in lung fibroblasts derived from three controls (normal periphery of resected tumor), open lung biopsies from three patients with idiopathic pulmonary fibrosis (usual interstitial pneumonia pattern on biopsy) and from three patients with fibrosing alveolitis associated with systemic sclerosis (fibrotic non specific interstitial pneumonia pattern on biopsy). Lung fibroblasts were grown to confluence in DMEM with 10% fetal calf serum. At confluence, lung fibroblasts were serum-deprived overnight, and exposed to either 4 ng/ml of activated TGF-ß1 (R&D Systems) or serum-free culture medium with 0.1% BSA for four hours. Keywords: other
Project description:We used an integrated computational/experimental systems biology approach to identify upstream protein kinases that regulate gene expression changes in kidneys of HIV-1 transgenic mice (Tg26), which have significant tubulo-interstitial fibrosis (TIF) and glomerulosclerosis (GS). We identified the homeo-domain interacting protein kinase 2 (HIPK2) as a key regulator of TIF and GS. HIPK2 was upregulated in kidneys of Tg26 and patients with various kidney diseases. HIV infection increased the protein level of HIPK2 by promoting oxidative stress, which inhibited Siah1-mediated proteasomal degradation of HIPK2. The data contain two sets: kidney corticies from WT and Tg26 mice and HEK293 transfected with HIPK2, HIPK2-DN and wild type. Gene expression comparison between kidney cortecies of Tg26 HIV mouse model and wild type. Gene expression comparison between 293 HEK cells with HIPK-DN, HIPK-KO and normal.