Project description:Little is known about the contribution of the epigenome to the pathophysiology of type 2 diabetes (T2D). Here we have used genome-wide DNA methylation profiling to obtain the first comprehensive DNA methylation data set for human T2D pancreatic islets. Therefore, we analyzed the methylation profile of 27,578 CpG sites affiliated to more than 14,000 genes in 16 samples of pancreatic islets, 11 normal and 5 type 2-diabetic. Keywords: DNA methylation Keywords: Methylation profiling by array We measured the methylation status of the 27,578 CpG sites (Human Methylation27 DNA BeadChip array) in genomic DNA obtained from pnacreatic islets of 11 non-diabetic and 5 type-2-diabetic male human donors to identify genes that are differentially methylated in T2D.
Project description:Little is known about the contribution of the epigenome to the pathophysiology of type 2 diabetes (T2D). Here we have used genome-wide DNA methylation profiling to obtain the first comprehensive DNA methylation data set for human T2D pancreatic islets. Therefore, we analyzed the methylation profile of 27,578 CpG sites affiliated to more than 14,000 genes in 16 samples of pancreatic islets, 11 normal and 5 type 2-diabetic. Keywords: DNA methylation Keywords: Methylation profiling by array
Project description:Intrauterine growth restriction (IUGR) increases susceptibility to age-related diseases including type 2 diabetes (T2DM), and is associated with permanent and progressive changes in gene expression and epigenetic regulation. We studied cytosine methylation throughout the genome in pancreatic islets from a rat model of uteroplacental insufficiency, providing a novel and detailed assessment of the genomic distribution and locus-specific patterns of DNA methylation in normal islets as well as the changes that occur as a consequence of IUGR. Utilizing a high throughput approach to study DNA methylation at almost 1 million unique sites throughout the genome, we found ~1,400 changes in methylation (IUGR compared to control) with an estimated false discovery rate of 4.2%. These epigenetic differences were observed in IUGR male rats at 7 weeks of age, preceding the development of diabetes in this model. Therefore, these epigenetic differences represent candidates for mediating the pathogenesis of metabolic disease that occurs later in life in these animals. Moreover, many of the changes we identify are located near genes that regulate processes known to be abnormal in IUGR islets, such as vascularization, β-cell proliferation, insulin secretion, and cell death. Consistent changes in mRNA expression were identified at some of the epigenetically-dysregulated genes including Fgfr1, Gch1, Pcsk5, and Vgf. Globally, epigenetic dysregulation occurred preferentially at conserved intergenic sequences, which are candidate cis-regulatory elements driving differential expression of nearby genes. These results provide insights into the complex developmental consequences of IUGR, and suggest that changes in DNA methylation could mediate a constellation of changes in both gene expression and pancreatic islet development and function, with relevance to T2DM. Direct comparison of DNA methylation in 8 samples consisting of isolated, pooled pancreatic islets from 7-week-old male offspring belonging to 4 IUGR and 4 control litters (Sprague-Dawley rats). Each microarray consists of a two-color comparison of a methylation-sensitive representation of the genome (HpaII) with an internal methylation-insensitive control/reference (MspI).
Project description:The global prevalence of type 2 diabetes (T2D) is increasing, and it is contributing to the susceptibility to diabetes and its related epidemic in offspring. Although the impacts of paternal T2D on metabolism of offspring have been well established, the exact molecular and mechanistic basis that mediates these impacts remains largely unclear. Here we show that paternal T2D increases the susceptibility to diabetes in offspring through the gametic epigenetic alterations. Paternal T2D led to glucose intolerance and insulin resistance in offspring. Relative to controls, offspring of T2D fathers exhibited altered gene expression patterns in the pancreatic islets, with downregulation of several genes involved in glucose metabolism and insulin signaling pathway. Epigenomic profiling of offspring pancreatic islets revealed numerous changes in cytosine methylation depending on paternal T2D, including reproducible changes in methylation over several insulin signaling genes. Paternal T2D altered overall methylome patterns in sperm, with a large portion of differentially methylated genes overlapped with that of pancreatic islets in offspring. Our study revealed, for the first time, that T2D can be inherited transgenerationally through the mammalian germline by an epigenetic manner. Examination of the effect of paternal T2D on the DNA methylation in the pancreatic islets of offspring and in the sperm of father.
Project description:Intrauterine growth restriction (IUGR) increases the risk of developing type 2 diabetes in adulthood. A rat model of IUGR induced by bilateral uterine artery ligation at day 18 of gestation, which reduces the blood supply and critical substrates to the fetus, was used to assess the alterations of genome-wide DNA methylation in IUGR islets. At 2 weeks of age, pancreatic islets were isolated and genomic DNA were extracted for TruSeq-HELP tagging assay. Cytosine methylation was compared in the study.
Project description:The global prevalence of type 2 diabetes (T2D) is increasing, and it is contributing to the susceptibility to diabetes and its related epidemic in offspring. Although the impacts of paternal T2D on metabolism of offspring have been well established, the exact molecular and mechanistic basis that mediates these impacts remains largely unclear. Here we show that paternal T2D increases the susceptibility to diabetes in offspring through the gametic epigenetic alterations. Paternal T2D led to glucose intolerance and insulin resistance in offspring. Relative to controls, offspring of T2D fathers exhibited altered gene expression patterns in the pancreatic islets, with downregulation of several genes involved in glucose metabolism and insulin signaling pathway. Epigenomic profiling of offspring pancreatic islets revealed numerous changes in cytosine methylation depending on paternal T2D, including reproducible changes in methylation over several insulin signaling genes. Paternal T2D altered overall methylome patterns in sperm, with a large portion of differentially methylated genes overlapped with that of pancreatic islets in offspring. Our study revealed, for the first time, that T2D can be inherited transgenerationally through the mammalian germline by an epigenetic manner. For all comparisons shown, male F0 founders were weaned from mothers at 3 weeks of age, and sibling males were put into cages with high-fat diet (33% energy as fat) or control diet until 12 weeks of age, at which point mice fed with HFD were injected intraperitoneally with a low dose of STZ and kept on the same diet for 4 weeks. Fasting blood glucose was examined each week post-STZ for 4 weeks, and only glucose level at 7~11 mM was considered as type 2 diabetes. Females were always raised on standard diet. At 16 weeks, male F0 founders were mated with females. After 1 or 2 days, males were removed, and pregnant females were left alone until their litters were 3 weeks of age. Note that we always used virgin females to avoid confounding effects brought about by the females. At 3 weeks of age a portion of the offspring were sacrificed and islets were generated, each from an independent father.Samples from six control and six paternal type 2 diabetes offspring were chosen for microarray analysis.
Project description:Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type–specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes. Pancreatic islets were collected post-mortem from 6 human donors and subjected to FACS to separate populations of alpha, beta, and exocrine cells. Depending on the availability of resulting material, sorted islet cell populations were used for H3K4me3, H3K27me3 ChIP-seq, or RNA-seq analysis. All ChIP-seq samples have a corresponding input from the same sample.
Project description:comparison of microRNA expression in the islets of 3- and 12-months old male Wistar rats Aging is a risk factor for a majority of metabolic diseases including type 2 diabetes. During aging pancreatic beta-cell function decreases leading to impaired insulin secretion and proliferation and to an increase in apoptosis. Impairment of pancreatic beta cell functions and survival has been linked to gene expression changes. The aim of our study was to obtain a global expression profile of microRNAs and mRNAs of pancreatic islets of 3 and 12 month old male Wistar rats in order to identify the changes occurring during aging.
Project description:comparison of mRNA expression in the islets of 3- and 12-month old male Wistar rats Aging is a risk factor for a majority of metabolic diseases including type 2 diabetes. During aging pancreatic beta-cell function decreases leading to impaired insulin secretion and proliferation and to an increase in apoptosis. Impairment of pancreatic beta cell functions and survival has been linked to gene expression changes. The aim of our study was to obtain a global expression profile of microRNAs and mRNAs of pancreatic islets of 3 and 12 month old male Wistar rats in order to identify the changes occurring during aging.