Project description:The DosR regulon in Mycobacterium tuberculosis is involved in respiration-limiting conditions and its induction is controlled by two histidine kinases, DosS and DosT. Recent experimental evidence indicates DosS senses either molecular oxygen or a redox change. This report demonstrates that DosS responds to a reduced electron transport system (ETS), although this does not rule out a role for oxygen in silencing signaling. Under aerobic conditions induction of the DosR regulon by DosS but not DosT was observed after the addition of ascorbate, a powerful cytochrome c reductant, demonstrating DosS responds to a redox signal even in the presence of high oxygen tension. During hypoxic conditions regulon induction was attenuated by treatment with compounds that occluded electron flow into the menaquinone pool or decreased the size of the menaquinone pool itself. Increased regulon expression during hypoxia was observed when exogenous menaquinone was added, demonstrating the menaquinone pool is a limiting factor in regulon induction. Taken together these data indicate that a reduced menaquinone pool directly or indirectly triggers induction of the DosR regulon via DosS. Biochemical analysis of menaquinones upon entry into hypoxic/anaerobic conditions demonstrated the disappearance of the unsaturated species and low-level maintenance of the mono-saturated menaquinone. Relative to the unsaturated form, an analog of the saturated form is better able to induce signaling via DosS, rescue inhibition of menaquinone synthesis, and is less toxic. The menaquinone pool is central to the ETS and therefore provides a mechanistic link between the respiratory state of the bacilli and DosS signaling. Aerobically growing logarithmic phase DosS and DosT mutant strains were analyzed after treatment with the cytochrome c reductant ascorbate to examine the effect on DosR signaling caused by reducing the electron transport system. Experiments were repeated in triplicate (dosT mutant) or duplicate (dosS mutant).
Project description:The DosR regulon in Mycobacterium tuberculosis is involved in respiration-limiting conditions and its induction is controlled by two histidine kinases, DosS and DosT. Recent experimental evidence indicates DosS senses either molecular oxygen or a redox change. This report demonstrates that DosS responds to a reduced electron transport system (ETS), although this does not rule out a role for oxygen in silencing signaling. Under aerobic conditions induction of the DosR regulon by DosS but not DosT was observed after the addition of ascorbate, a powerful cytochrome c reductant, demonstrating DosS responds to a redox signal even in the presence of high oxygen tension. During hypoxic conditions regulon induction was attenuated by treatment with compounds that occluded electron flow into the menaquinone pool or decreased the size of the menaquinone pool itself. Increased regulon expression during hypoxia was observed when exogenous menaquinone was added, demonstrating the menaquinone pool is a limiting factor in regulon induction. Taken together these data indicate that a reduced menaquinone pool directly or indirectly triggers induction of the DosR regulon via DosS. Biochemical analysis of menaquinones upon entry into hypoxic/anaerobic conditions demonstrated the disappearance of the unsaturated species and low-level maintenance of the mono-saturated menaquinone. Relative to the unsaturated form, an analog of the saturated form is better able to induce signaling via DosS, rescue inhibition of menaquinone synthesis, and is less toxic. The menaquinone pool is central to the ETS and therefore provides a mechanistic link between the respiratory state of the bacilli and DosS signaling.
Project description:In Mycobacterium tuberculosis, the sensor kinases DosT and DosS activate the transcriptional regulator DosR, resulting in the induction of the DosR regulon, important for anaerobic survival and perhaps latent infection. The individual and collective roles of these sensors has been postulated biochemically, but their roles have remained unclear in vivo. This work demonstrates distinct and additive roles for each sensor during anaerobic dormancy. Both sensors are necessary for wild type levels of DosR regulon induction, and concomitantly, full induction of the regulon is required for wild type anaerobic survival. In the anaerobic model, DosT plays an early role, responding to hypoxia. DosT then induces the regulon and with it DosS, which sustains and further induces the regulon. DosT then loses its functionality as oxygen becomes limited, and DosS alone maintains induction of the genes from that point forward. Thus, M. tuberculosis has evolved a system whereby it responds to hypoxic conditions in a stepwise fashion as it enters an anaerobic state.
Project description:In Mycobacterium tuberculosis, the sensor kinases DosT and DosS activate the transcriptional regulator DosR, resulting in the induction of the DosR regulon, important for anaerobic survival and perhaps latent infection. The individual and collective roles of these sensors has been postulated biochemically, but their roles have remained unclear in vivo. This work demonstrates distinct and additive roles for each sensor during anaerobic dormancy. Both sensors are necessary for wild type levels of DosR regulon induction, and concomitantly, full induction of the regulon is required for wild type anaerobic survival. In the anaerobic model, DosT plays an early role, responding to hypoxia. DosT then induces the regulon and with it DosS, which sustains and further induces the regulon. DosT then loses its functionality as oxygen becomes limited, and DosS alone maintains induction of the genes from that point forward. Thus, M. tuberculosis has evolved a system whereby it responds to hypoxic conditions in a stepwise fashion as it enters an anaerobic state. Various DosS and DosT mutant strains were analyzed against wild type (reference strain H37Rv, identical conditions as mutant) under various conditions: day 6 in an anaerobic dormancy model, 4 or 24 hours in a GasPak model, or log phase with the addition of a nitric oxide donor. Experiments were repeated in triplicate or quadruplicate.
Project description:Background: Conflicting results have been reported about the role of the two-component sensor and transcriptional regulator DosS/DosR, controlling the expression of the dormancy DosR regulon, for in vivo virulence of M. tuberculosis. Here, we have used a new approach to further analyze the relevance of the dosRS system, by driving DosR (Rv3133c) expression under the control of a constitutive promoter (phsp60). Methodology/Principal Findings: M. tuberculosis H37Rv constitutively expressing the transcriptional regulator DosR (Mtb::DosR) was compared to wild type M. tuberculosis (Mtb+/+) for in vitro growth kinetics and expression of the target genes of the DosR dormancy regulon, for in vivo virulence and for immunogenicity in mice. Under aerobic conditions, hsp60-driven DosR induced the expression of 28 out of 39 tested DosR regulon genes. In vitro growth characteristics were comparable for both strains, but Mtb::DosR showed an attenuated in vivo phenotype in immunocompetent mice, as indicated by reduced bacterial replication, reduced pulmonary immunopathology, reduced cachexia and significantly prolonged survival time as compared Mtb+/+. In immunodeficient SCID mice, Mtb::DosR was fully virulent. RT-qPCR analysis revealed a strong and comparable pulmonary TNF-?? and IL-23 expression following intratracheal infection, whereas IL-12 and IL-17 expression was slightly higher with wild type Mtb+/+. Finally, mice persistently infected with Mtb::DosR for 8 months showed five to tenfold higher lung IFN-?? responses against ten of the 48 DosR regulon encoded antigens (Rv1733c, Rv1734, Rv1738, Rv1996, Rv1997, Rv2029c, Rv2623, Rv2627c, Rv2628 and Rv3127) than mice actively infected with Mtb+/+. In spleen however, DosR regulon encoded antigen specific IFN-?? responses were similar in both groups. Conclusions/Significance. Collectively, these results suggest that increased DosR regulon encoded antigen specific pulmonary T cell responses are responsible for the attenuated phenotype of Mtb::DosR and that infection with Mtb::DosR could be used as a new animal model for studying key aspects of latent tuberculosis. Set of arrays that are part of repeated experiments
Project description:Background: Conflicting results have been reported about the role of the two-component sensor and transcriptional regulator DosS/DosR, controlling the expression of the dormancy DosR regulon, for in vivo virulence of M. tuberculosis. Here, we have used a new approach to further analyze the relevance of the dosRS system, by driving DosR (Rv3133c) expression under the control of a constitutive promoter (phsp60). Methodology/Principal Findings: M. tuberculosis H37Rv constitutively expressing the transcriptional regulator DosR (Mtb::DosR) was compared to wild type M. tuberculosis (Mtb+/+) for in vitro growth kinetics and expression of the target genes of the DosR dormancy regulon, for in vivo virulence and for immunogenicity in mice. Under aerobic conditions, hsp60-driven DosR induced the expression of 28 out of 39 tested DosR regulon genes. In vitro growth characteristics were comparable for both strains, but Mtb::DosR showed an attenuated in vivo phenotype in immunocompetent mice, as indicated by reduced bacterial replication, reduced pulmonary immunopathology, reduced cachexia and significantly prolonged survival time as compared Mtb+/+. In immunodeficient SCID mice, Mtb::DosR was fully virulent. RT-qPCR analysis revealed a strong and comparable pulmonary TNF-?? and IL-23 expression following intratracheal infection, whereas IL-12 and IL-17 expression was slightly higher with wild type Mtb+/+. Finally, mice persistently infected with Mtb::DosR for 8 months showed five to tenfold higher lung IFN-?? responses against ten of the 48 DosR regulon encoded antigens (Rv1733c, Rv1734, Rv1738, Rv1996, Rv1997, Rv2029c, Rv2623, Rv2627c, Rv2628 and Rv3127) than mice actively infected with Mtb+/+. In spleen however, DosR regulon encoded antigen specific IFN-?? responses were similar in both groups. Conclusions/Significance. Collectively, these results suggest that increased DosR regulon encoded antigen specific pulmonary T cell responses are responsible for the attenuated phenotype of Mtb::DosR and that infection with Mtb::DosR could be used as a new animal model for studying key aspects of latent tuberculosis.
Project description:Background: A significant body of evidence accumulated over the last century suggests a link between hypoxic microenvironments within the infected host and the latent phase of tuberculosis. Studies to test this correlation have identified the M. tuberculosis initial hypoxic response, controlled by the two-component response regulator DosR. The initial hypoxic response is completely blocked in a dosR deletion mutant. Methodology/Principal Findings: We show here that a dosR deletion mutant enters bacteriostasis in response to in vitro hypoxia with only a relatively mild decrease in viability. In the murine infection model, the phenotype of the mutant was indistinguishable from that of the parent strain. These results suggested that additional genes may be essential for entry into and maintenance of bacteriostasis. Detailed microarray analysis of oxygen starved cultures revealed that DosR regulon induction is transient, with induction of nearly half the genes returning to baseline within 24 hours. In addition, a larger, sustained wave of gene expression follows the DosR-mediated initial hypoxic response. This Enduring Hypoxic Response (EHR) consists of 230 genes significantly induced at four and seven days of hypoxia but not at initial time points. These genes include a surprising number of transcriptional regulators that could control the program of bacteriostasis. We found that the EHR is independent of the DosR-mediated initial hypoxic response, as EHR expression is virtually unaltered in the dosR mutant. Conclusions/Significance: Our results suggest a reassessment of the role of DosR and the initial hypoxic response in MTB physiology. Instead of a primary role in survival of hypoxia induced bacteriostasis, DosR may regulate a response that is largely optional in vitro and in mouse infections. Analysis of the EHR should help elucidate the key regulatory factors and enzymatic machinery exploited by M. tuberculosis for long-term bacteriostasis in the face of oxygen deprivation. Keywords: time-course
Project description:Background: A significant body of evidence accumulated over the last century suggests a link between hypoxic microenvironments within the infected host and the latent phase of tuberculosis. Studies to test this correlation have identified the M. tuberculosis initial hypoxic response, controlled by the two-component response regulator DosR. The initial hypoxic response is completely blocked in a dosR deletion mutant. Methodology/Principal Findings: We show here that a dosR deletion mutant enters bacteriostasis in response to in vitro hypoxia with only a relatively mild decrease in viability. In the murine infection model, the phenotype of the mutant was indistinguishable from that of the parent strain. These results suggested that additional genes may be essential for entry into and maintenance of bacteriostasis. Detailed microarray analysis of oxygen starved cultures revealed that DosR regulon induction is transient, with induction of nearly half the genes returning to baseline within 24 hours. In addition, a larger, sustained wave of gene expression follows the DosR-mediated initial hypoxic response. This Enduring Hypoxic Response (EHR) consists of 230 genes significantly induced at four and seven days of hypoxia but not at initial time points. These genes include a surprising number of transcriptional regulators that could control the program of bacteriostasis. We found that the EHR is independent of the DosR-mediated initial hypoxic response, as EHR expression is virtually unaltered in the dosR mutant. Conclusions/Significance: Our results suggest a reassessment of the role of DosR and the initial hypoxic response in MTB physiology. Instead of a primary role in survival of hypoxia induced bacteriostasis, DosR may regulate a response that is largely optional in vitro and in mouse infections. Analysis of the EHR should help elucidate the key regulatory factors and enzymatic machinery exploited by M. tuberculosis for long-term bacteriostasis in the face of oxygen deprivation. Keywords: time-course Each hypoxic timecourse compared to the matching log phase sample. Each time point/strain represented by a minimum of three replicates.
Project description:Transcriptional profiling of M. tuberculosis dosR and dosS mutants and wild type growing in log phase treated with carbon monoxide or nitric oxide versus untreated controls Keywords: Genetic modification