Project description:Gene expression data obtained from induced pluripotent stem cells derived from wild type fibroblasts (iPSc WT) and from Gaucher Disease type 2 fibroblasts (GD iPSc). Also, gene expression analysis from the initial fibroblasts was made (WT fibroblasts and GD- fibroblasts), as well as gene expression analysis from a human embryonic stem cell line (hES4). Two different iPSc cell lines derived from Gaucher Disease type 2 fibroblasts were analysed in order to be compared to iPSc derived from Wild Type fibroblasts (only one cell line) and human embryonic stem cells (only one cell line). The initial cells: two different wild type fibroblasts and one Gaucher disease type 2 fibroblasts were also analysed.
Project description:This work presents the discovery of genes that are dysregulated in patients with Type I and Type III Gaucher Disease. It provides insight into the unique pathogenesis of these phenotypes, improved diagnostic accuracy and potential novel therapies for these patients. Control and patient fibroblast cultures were established from full-thickness, skin biopsies obtained under a protocol approved by the IRB of the National Institute of Neurological Disorders and Stroke. Patient cultures were homoallelic for either the N370S mutation (non-neuronopathic, Gaucher Disease Type I, n=5), the L444P mutation (neuronopathic, Gaucher Disease Type III, n=5), or Wild-Type (Control, n=4).
Project description:Gaucher disease, a recessive inherited metabolic disorder caused by defects in the gene encoding glucosylceramidase (GlcCerase), can be divided into three subtypes according to the appearance of symptoms associated with central nervous system involvement. We now identify a protein, glycoprotein non-metastatic B (GPNMB), that acts as an authentic marker of brain pathology in neurological forms of Gaucher disease. Using three independent techniques, including quantitative global proteomic analysis of cerebrospinal fluid (CSF) in samples from Gaucher disease patients that display neurological symptoms, we demonstrate a correlation between the severity of symptoms and GPNMB levels. Moreover, GPNMB levels in the CSF correlate with disease severity in a mouse model of Gaucher disease. GPNMB was also elevated in brain samples from patients with type 2 and 3 Gaucher disease. Our data suggest that GPNMB can be used as a marker to quantify neuropathology in Gaucher disease patients and as a marker of treatment efficacy once suitable treatments towards the neurological symptoms of Gaucher disease become available.
Project description:Analysis of gene expression profiling of cultured skin fibroblasts obtained from patients affected with vascular Ehlers Danlos syndrome (vEDS) Transcriptome-wide expression profiling using the Affymetrix Gene 1.0 ST platform comparing the gene expression pattern of cultured skin fibroblasts derived from three patients with vEDS with those of nine healthy individuals
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)
Project description:Gaucher disease, a recessive inherited metabolic disorder caused by defects in the gene encoding glucosylceramidase (GlcCerase), can be divided into three subtypes according to the appearance of symptoms associated with central nervous system involvement. We now identify a protein, glycoprotein non-metastatic B (GPNMB), that acts as an authentic marker of brain pathology in neurological forms of Gaucher disease. Using three independent techniques, including quantitative global proteomic analysis of cerebrospinal fluid (CSF) in samples from Gaucher disease patients that display neurological symptoms, we demonstrate a correlation between the severity of symptoms and GPNMB levels. Moreover, GPNMB levels in the CSF correlate with disease severity in a mouse model of Gaucher disease. GPNMB was also elevated in brain samples from patients with type 2 and 3 Gaucher disease. Our data suggest that GPNMB can be used as a marker to quantify neuropathology in Gaucher disease patients and as a marker of treatment efficacy once suitable treatments towards the neurological symptoms of Gaucher disease become available.
Project description:Gaucher disease type 1 is an inborn error of metabolic disease with the defective activity of the lysosomal enzyme acid b-glucosidase (GCase). Enzyme replacement/reconstitution therapy (ERT), infusions with purified recombinant GCases, is efficacious in reversing hematologic, hepatic, splenic, and bony disease manifestations in Gaucher type 1 patients. However, the tissue specific molecular events in Gaucher disease and their response to therapy are not known yet. To explore the molecular events underlying GCase treatment, we evaluated the tissue-specific gene expression profiles and molecular responses in our Gaucher disease mouse model, which were treated with two FDA approved commercially available GCases, imiglucerase (imig) and velaglucerase alfa (vela). Using microarray and mRNA-Seq techniques, differentially expressed genes (DEGs) were identified in the spleen and liver by the direct comparison of imig- vs. vela- treated mice. Among them three gene expression networks were derived from these spleens: 1) cell division/proliferation, 2) hematopoietic system and 3) inflammatory/macrophage response. Our study showed the occurrence of differential molecular pathophysiologic processes in the mice treated with imig compared with vela even though these two biosimilars had the same histological and biochemical efficacy 9V/null mice (Gaucher mouse model) were injected weekly via tail vein with 60U/kg/wk of imig or vela for 8 wks. To understand the molecular events underlying GCase treatment, we evaluated the tissue-specific gene expression profiles and molecular responses in our Gaucher disease mouse model, which were treated with two FDA approved commercially available GCases, imiglucerase (imig) and velaglucerase alfa (vela).
Project description:Gene expression data obtained from induced pluripotent stem cells derived from wild type fibroblasts (iPSc WT) and from Gaucher Disease type 2 fibroblasts (GD iPSc). Also, gene expression analysis from the initial fibroblasts was made (WT fibroblasts and GD- fibroblasts), as well as gene expression analysis from a human embryonic stem cell line (hES4).
Project description:Gaucher disease type 1 is an inborn error of metabolic disease with the defective activity of the lysosomal enzyme acid b-glucosidase (GCase). Enzyme replacement/reconstitution therapy (ERT), infusions with purified recombinant GCases, is efficacious in reversing hematologic, hepatic, splenic, and bony disease manifestations in Gaucher type 1 patients. However, the tissue specific molecular events in Gaucher disease and their response to therapy are not known yet. To explore the molecular events underlying GCase treatment, we evaluated the tissue-specific gene expression profiles and molecular responses in our Gaucher disease mouse model, which were treated with two FDA approved commercially available GCases, imiglucerase (imig) and velaglucerase alfa (vela). Using microarray and mRNA-Seq techniques, differentially expressed genes (DEGs) were identified in the spleen and liver by the direct comparison of imig- vs. vela-treated mice. Among them three gene expression networks were derived from these spleens: 1) cell division/proliferation, 2) hematopoietic system and 3) inflammatory/macrophage response. Our study showed the occurrence of differential molecular pathophysiologic processes in the mice treated with imig compared with vela even though these two biosimilars had the same histological and biochemical efficacy 9V/null mice (Gaucher mouse model) were injected weekly via tail vein with 60U/kg/wk of imig or vela for 8 wks and were sacrificed one week after the injection for RNA isolation from different tissues like liver, lung and spleen.