Project description:Myotonic dystrophes (DM), the most common adult muscular dystrophy, are the first recognized examples of RNA-mediated diseases in which expression of mutant RNAs containing expanded CUG or CCUG repeats interfere with the splicing of other mRNAs. Using whole-genome microarrays, we found that alternative splicing of the BIN1 mRNA is altered in DM skeletal muscle tissues, resulting in the expression of an inactive form of BIN1 deprived of phosphoinositide-binding and membrane-tubulating activities. BIN1 is involved in tubular invaginations of the plasma membrane and is essential for biogenesis of the muscle T-tubules, which are specialized skeletal muscle membrane structures essential to correct excitation-contraction (E-C) coupling. Mutations in the BIN1 gene cause centronuclear myopathy (CNM) that shares some histopathological features with DM, and both diseases are characterized by muscle weakness. Consistent with a loss-of-function of BIN1, muscle T-tubules were altered in DM patients, and membrane tubulation was restored upon expression of the correct splicing form of BIN1 in DM muscle cells. By deciphering the mechanism of BIN1 splicing mis-regulation we demonstrate that the splicing regulator, MBNL1, which is sequestered by expanded CUG and CCUG in DM, binds the BIN1 pre-mRNA and regulates directly its alternative splicing. Finally, reproducing BIN1 splicing alteration in mice is sufficient to reproduce the DM features of T-tubule alterations and muscle weakness. We propose that alteration of BIN1 alternative splicing regulation leads to muscle weakness, a predominant pathological feature of DM. Exon-Array analysis of control and CDM1 muscle primary cultures 10 days of differentiation
Project description:Myotonic dystrophes (DM), the most common adult muscular dystrophy, are the first recognized examples of RNA-mediated diseases in which expression of mutant RNAs containing expanded CUG or CCUG repeats interfere with the splicing of other mRNAs. Using whole-genome microarrays, we found that alternative splicing of the BIN1 mRNA is altered in DM skeletal muscle tissues, resulting in the expression of an inactive form of BIN1 deprived of phosphoinositide-binding and membrane-tubulating activities. BIN1 is involved in tubular invaginations of the plasma membrane and is essential for biogenesis of the muscle T-tubules, which are specialized skeletal muscle membrane structures essential to correct excitation-contraction (E-C) coupling. Mutations in the BIN1 gene cause centronuclear myopathy (CNM) that shares some histopathological features with DM, and both diseases are characterized by muscle weakness. Consistent with a loss-of-function of BIN1, muscle T-tubules were altered in DM patients, and membrane tubulation was restored upon expression of the correct splicing form of BIN1 in DM muscle cells. By deciphering the mechanism of BIN1 splicing mis-regulation we demonstrate that the splicing regulator, MBNL1, which is sequestered by expanded CUG and CCUG in DM, binds the BIN1 pre-mRNA and regulates directly its alternative splicing. Finally, reproducing BIN1 splicing alteration in mice is sufficient to reproduce the DM features of T-tubule alterations and muscle weakness. We propose that alteration of BIN1 alternative splicing regulation leads to muscle weakness, a predominant pathological feature of DM.
Project description:Misregulated alternative splicing appears to be a major factor in the pathogenesis of myotonic dystrophy. The present study was done to further explore alternative splicing in this condition by doing exon-level analysis of mRNA from skeletal muscle of 8 subjects with type 1 myotonic dystrophy, 7 subjects with type 2 myotonic dystrophy, 8 disease controls (subjects with facioscapulohumeral muscular dystrophy), and 8 healthy controls . The ratios of signals from the various exons of a gene provided an index of altered exon inclusion/exclusion that was independent of the overall expression of that gene. There were numerous transcripts for which there was evidence of abnormal alternative splicing in subjects with myotonic dystrophy. For many of these transcripts, the abnormal splicing was confirmed by an independent RT-PCR approach. 31 subjects, one sample per subject, four groups: healthy subjects (n = 8), facioscapulohumeral dystrophy (n = 8), type 1 myotonic dystrophy (n = 8), type 2 myotonic dystrophy (n = 7)
Project description:Misregulated alternative splicing appears to be a major factor in the pathogenesis of myotonic dystrophy. The present study was done to further explore alternative splicing in this condition by doing exon-level analysis of mRNA from skeletal muscle of 8 subjects with type 1 myotonic dystrophy, 7 subjects with type 2 myotonic dystrophy, 8 disease controls (subjects with facioscapulohumeral muscular dystrophy), and 8 healthy controls . The ratios of signals from the various exons of a gene provided an index of altered exon inclusion/exclusion that was independent of the overall expression of that gene. There were numerous transcripts for which there was evidence of abnormal alternative splicing in subjects with myotonic dystrophy. For many of these transcripts, the abnormal splicing was confirmed by an independent RT-PCR approach.
Project description:MBNL1 is a known splicing factor and is related to Myotonic Dystrophy (DM). This study examines the tissue specific splicing patterns of MBNL1 using a mutant and wild type mouse across three tissues (heart,brain,quadricep) related publications: Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Du H, etal Nat Struct Mol Biol. 2010 Feb;17(2):187-93. and Hum Mol Genet. 2006 Jul 1;15(13):2087-97. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA. We examined quadricep,heart and brain of a mouse MBNL1 mutant to test whether MBNL mutants creates a tissue specific splicing defect. These samples were compared to the tissues of a wild type mouse.
Project description:Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knockin model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knockin mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from donors without neurologically unaffected (two females, three males; ages 50-70) and myotonic dystrophy type 1 donors (one female, three males; ages 50-70). To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55) and non-myotonic dystrophy patients (three females, four males; ages 26-51) and Western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knockin mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knockin mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output, and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.
Project description:Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knockin model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knockin mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from donors without neurologically unaffected (two females, three males; ages 50-70) and myotonic dystrophy type 1 donors (one female, three males; ages 50-70). To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55) and non-myotonic dystrophy patients (three females, four males; ages 26-51) and Western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knockin mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knockin mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output, and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.
Project description:Muscleblind-like proteins (MBNLs) regulate various RNA-processing steps, including alternative splicing, polyadenylation, RNA stability, and mRNA intracellular localization. In myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults, MBNLs are sequestered on toxic RNA containing expanded CUG repeats, which leads to disruption of MBNL-regulated processes and disease features of DM1. Herein, we showed the significance of MBNLs in the regulation of microtranscriptome dynamics during postnatal development of skeletal muscles and in microRNA (miRNA) misregulation observed in mouse models and patients with DM1. We identified multiple miRNAs sensitive to insufficiency of MBNL proteins and revealed that many of them were postnatally regulated, which was correlated with increases in the activity of these proteins during this process. In adult Mbnl1-knockout mice, miRNA expression exhibited an adult-to-newborn shift. We identified two mechanisms through which MBNLs influence miRNA levels. First, MBNL loss induces transcriptional changes in miRNA precursors. Second, MBNLs affect miRNA biogenesis by regulating the alternative splicing of miRNA primary transcripts.
Project description:Muscleblind-like proteins (MBNLs) regulate various RNA-processing steps, including alternative splicing, polyadenylation, RNA stability, and mRNA intracellular localization. In myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults, MBNLs are sequestered on toxic RNA containing expanded CUG repeats, which leads to disruption of MBNL-regulated processes and disease features of DM1. Herein, we showed the significance of MBNLs in the regulation of microtranscriptome dynamics during postnatal development of skeletal muscles and in microRNA (miRNA) misregulation observed in mouse models and patients with DM1. We identified multiple miRNAs sensitive to insufficiency of MBNL proteins and revealed that many of them were postnatally regulated, which was correlated with increases in the activity of these proteins during this process. In adult Mbnl1-knockout mice, miRNA expression exhibited an adult-to-newborn shift. We identified two mechanisms through which MBNLs influence miRNA levels. First, MBNL loss induces transcriptional changes in miRNA precursors. Second, MBNLs affect miRNA biogenesis by regulating the alternative splicing of miRNA primary transcripts.
Project description:MBNL1 is a known splicing factor and is related to Myotonic Dystrophy (DM). This study examines the tissue specific splicing patterns of MBNL1 using a mutant and wild type mouse across three tissues (heart,brain,quadricep) related publications: Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Du H, etal Nat Struct Mol Biol. 2010 Feb;17(2):187-93. and Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain. Suenaga K, Lee KY, Nakamori M, Tatsumi Y, Takahashi MP, Fujimura H, Jinnai K, Yoshikawa H, Du H, Ares M Jr, Swanson MS, Kimura T. PLoS One. 2012;7(3):e33218. Epub 2012 Mar 13. PMID: 22427994 and Hum Mol Genet. 2006 Jul 1;15(13):2087-97. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA.