Project description:The two most common melanoma histopathologic subtypes, superficial spreading (SSM) and nodular melanoma (NM), are believed to represent sequential phases of linear progression from radial to vertical growth. Studies suggest, however, that SSM and NM are biologically distinct. We utilized an integrative genomic approach to examine the possibility that SSM and NM are the result of independent pathways characterized by unique molecular alterations. Cell lines including SSM, NM, metastatic melanoma, and melanocyte controls were evaluated for copy number changes and differential mRNA expression using single nucleotide polymorphism array (SNP 6.0, Affymetrix) and gene array (U133A 2.0, Affymetrix). Data sets were integrated to identify copy number alterations that correlated with gene expression, and array results were validated using immunohistochemistry on human tissue microarrays (TMAs) and an external data set. The functional effect of genomic deletion was assessed by lentiviral overexpression. Integrative genomics revealed 8 genes in which NM/SSM-specific copy number alterations were correlated with NM/SSM differential gene expression (P<0.05, Spearman’s rank). Pathways analysis of differentially expressed genes (N=114) showed enrichment for metabolic-related processes. SSM-specific genomic deletions (DIS3, MTAP, G3BP2, SEC23IP, USO1) were verified in an expanded panel of cell lines, and forced overexpression of MTAP in SSM resulted in reduced cell growth. Metabolism-related gene ALDH7A1 was verified as overexpressed in NM using human TMAs.The identification of recurrent genomic deletions in SSM not present in NM challenges the linear model of melanoma progression and supports the unique molecular classification of SSM and NM. Gene expression profiling using Affymetrix U133A 2.0 arrays was performed on 18 melanoma cell lines including 2 primary superficial spreading melanoma, 2 primary nodular melanoma, 2 metastatic nodular melanoma, and 12 metastatic cell lines. Four melanocyte control lines were also evaluated including 2 immortalized melanocyte cell lines (Hermes 1 and 2B) and 2 normal melanocyte lines cultured from neonatal foreskin (HEM-N and HEM-LP).
Project description:Melanoma cell lines were genotyped to evaluate copy number differences between nodular melanoma (NM) and superficial spreading melanoma (SSM). Cell lines were also evaluated for copy number alterations in the SKP2/p27 axis. Affymetrix SNP arrays were performed according to manufacturer's instructions using DNA extracted from 18 melanoma cell lines and 4 melanocyte controls. Affymetrix SNP6.0 Array data for melanoma cell lines Copy number analysis of Affymetrix SNP 6.0 arrays was performed on 18 melanoma cell lines including 2 primary superficial spreading melanoma, 2 primary nodular melanoma, 2 metastatic nodular melanoma, and 12 metastatic cell lines. Four melanocyte control lines were also evaluated including 2 immortalized melanocyte cell lines (Hermes 1 and 2B) and 2 normal melanocyte lines cultured from neonatal foreskin (HEM-N and HEM-LP) that were used to construct the baseline for copy number analysis.
Project description:Melanoma cell lines were genotyped to evaluate copy number differences between nodular melanoma (NM) and superficial spreading melanoma (SSM). Cell lines were also evaluated for copy number alterations in the SKP2/p27 axis. Affymetrix SNP arrays were performed according to manufacturer's instructions using DNA extracted from 18 melanoma cell lines and 4 melanocyte controls.
Project description:The two most common melanoma histopathologic subtypes, superficial spreading (SSM) and nodular melanoma (NM), are believed to represent sequential phases of linear progression from radial to vertical growth. Studies suggest, however, that SSM and NM are biologically distinct. We utilized an integrative genomic approach to examine the possibility that SSM and NM are the result of independent pathways characterized by unique molecular alterations. Cell lines including SSM, NM, metastatic melanoma, and melanocyte controls were evaluated for copy number changes and differential mRNA expression using single nucleotide polymorphism array (SNP 6.0, Affymetrix) and gene array (U133A 2.0, Affymetrix). Data sets were integrated to identify copy number alterations that correlated with gene expression, and array results were validated using immunohistochemistry on human tissue microarrays (TMAs) and an external data set. The functional effect of genomic deletion was assessed by lentiviral overexpression. Integrative genomics revealed 8 genes in which NM/SSM-specific copy number alterations were correlated with NM/SSM differential gene expression (P<0.05, Spearman’s rank). Pathways analysis of differentially expressed genes (N=114) showed enrichment for metabolic-related processes. SSM-specific genomic deletions (DIS3, MTAP, G3BP2, SEC23IP, USO1) were verified in an expanded panel of cell lines, and forced overexpression of MTAP in SSM resulted in reduced cell growth. Metabolism-related gene ALDH7A1 was verified as overexpressed in NM using human TMAs.The identification of recurrent genomic deletions in SSM not present in NM challenges the linear model of melanoma progression and supports the unique molecular classification of SSM and NM.
Project description:A substantial part of cutaneous malignant melanomas develops from benign nevi. However, the precise molecular events driving the transformation from benign to malignant melanoma are not well understood. We used laser microdissection and mass spectrometry to analyze the proteomes of melanoma subtypes, including superficial spreading melanomas (SSM, n=17), nodular melanomas (NM, n=17), and acral melanomas (AM, n=15). Furthermore, we compared the proteomes of nevi cells and melanoma cells within the same specimens (nevus-associated melanoma (NAM, n=14)). In total, we quantified 7,935 proteins. Despite the genomic and clinical differences of the melanoma subtypes, our analysis revealed relatively similar proteomes, except for the upregulation of proteins involved in immune activation in NM vs AM. Examining NAM versus nevi, we found 1,725 differentially expressed proteins. Among these proteins were 140 that overlapped with cancer hallmarks, tumor suppressors, and regulators of metabolism and cell cycle. Pathway analysis indicated aberrant activation of the RAS/MAPK and PI3K-AKT-mTOR pathways, as well as the Hippo-YAP pathway. Using a classifier, we identified six proteins capable of distinguishing melanoma from nevi samples. Our study represents the first comprehensive comparative analysis of the proteome in melanoma subtypes and associated nevi, offering new insights into the biological behavior of these distinct entities.
Project description:In summary, we have validated differential expression of several miRs, namely two that are downregulated in all BCC subtypes compared to control skin (miR.383.5p, miR.145.5p), two that are downregulated in superficial BCC (miR.181c.5p, miR.181b.5p) relative to nodular and infiltrative BCC, and several that are upregulated in infiltrative BCC relative to superficial BCC (miR.22.5p, miR.18a.3p, miR.708.5p, miR.758.3p, miR.30c.5p), and two that are upregulated in infiltrative BCC relative to nodular BCC (miR.22.5p, miR.758.3p). To our knowledge, this study has investigated and validated the largest number of BCC tumors representing the different subtypes.
Project description:This SuperSeries is composed of the following subset Series: GSE20989: Mesothelioma integrative genomics: DNA methylation GSE21057: Copy number alterations in pleural mesothelioma Refer to individual Series