Project description:While intensely studied in the context of synaptic plasticity, the interplay between electrical activity and transcription is also relevant to circadian pacemaker neurons where ~24hr rhythms in gene expression and neural activity define the functional state of clock neurons. Here we demonstrate broad transcriptional changes in Drosophila circadian pacemaker neurons (LNvs) in response to altered electrical activity, including a large set of circadian genes. We used microarrays to identify the global program of gene expression in purified Drosophila pacemaker neurons in response to targeted electrical manipulations
Project description:Circadian clocks coordinate time-of-day specific metabolic and physiological processes to maximize performance and fitness. In addition to light, which is considered the strongest time cue to entrain animal circadian clocks, metabolic input has emerged as an important signal for clock modulation and entrainment, especially in peripheral clocks. Circadian clock proteins have been to be substrates of O-GlcNAcylation, a nutrient sensitive post-translational modification (PTM), and the interplay between clock protein O-GlcNAcylation and other PTMs, like phosphorylation, is expected to facilitate the regulation of circadian physiology by metabolic signals. Here, we used mass spectrometry proteomics to identify PTMs on PERIOD, the key biochemical timer of the Drosophila clock, over the circadian cycle.
Project description:Our recent single-cell sequencing of most adult Drosophila circadian neurons indicated notable and unexpected heterogeneity. To address whether other populations are similar, we sequenced a large subset of adult brain dopaminergic neurons. Their gene expression heterogeneity is similar to that of clock neurons, i.e., both populations have two to three cells per neuron group. There was also unexpected cell-specific expression of neuron communication molecule messenger RNAs: G protein–coupled receptor or cell surface molecule (CSM) transcripts alone can define adult brain dopaminergic and circadian neuron cell type. Moreover, the adult expression of the CSM DIP-beta in a small group of clock neurons is important for sleep. We suggest that the common features of circadian and dopaminergic neurons are general, essential for neuronal identity and connectivity of the adult brain, and that these features underlie the complex behavioral repertoire of Drosophila.
Project description:Circadian rhythms are daily oscillations in metabolism and physiology and are generated by the circadian clock. In fruit fly Drosophila, the circadian clock is generated by a transcription-translation feedback loop in which the positive arm components Clock and Cycle activate the expression of the Period and Timeless genes of negative arm, as well as other circadian clock-regulated genes. After being retained in the cytoplasm, the Period and Timeless proteins then migrate to the nucleus to inhibit the Clock/Cycle transactivity by protein-protein interactions (PPIs). The endogenous circadian clock is synchronized with the geological (solar) clock via photoreceptors. Drosophila Cryptochrome protein functions as a circadian photoreceptor. In the early morning, exposure of Cryptochrome to light causes a conformational change in it which results in the formation of new PPIs. Light-activated Cryptochrome interacts with the core clock protein Timeless and the E3 ubiquitin ligase-substrate adaptor protein Jetlag, which results in the ubiquitylation of Timeless by Jetlag-E3 ligase complex and then degradation of Timeless within minutes by proteasome system. Rapid degradation of Timeless and then its partner protein Period, because of its instability in the absence of Timeless, relieves the inhibition on the Clock/Cycle transcription factors suddenly. Therefore, Clock/Cycle-driven expression of circadian clock-regulated genes are induced again, which is the restart of the circadian oscillation or the resetting of the clock. Following Timeless degradation, Cryptochrome is also degraded so the photoreceptor mechanism does not start a new resetting signal until all the required factors are re-synthesized in a circadian manner. Light-dependent degradation of Drosophila Cryptochrome can be observed in Drosophila S2 cell line in culture. In this project, we aimed at finding the interactome of Cryptochrome protein in Drosophila S2 cell line under light and in the dark using proximity labeling method. Because of the fast kinetics of Cryptochrome degradation, we chose the enzymes that can saturate in less than one hour. TurboID (TID) and APEX2 enzymes label proteins with biotin in the proximity even though they work with different mechanisms. They were fused to Cryptochrome protein, and proximity labeling was performed in the dark or under light. We have identified novel light-dependent or -independent interactors of Drosophila Cryptochrome and confirmed some of them using classical coimmunoprecipitation technique.
Project description:Gene expression profiling of distinct members of a neuronal circuit has the potential to identify candidate molecules and mechanisms that underlie the formation, organization and function of the circuit. To this end, we report here the application of a novel method to characterize RNAs from small numbers of specific Drosophila brain neurons, which belong to the circadian circuit. We identified three different sets of mRNAs enriched in different subclasses of clock neurons: one is enriched in all clock neurons, a second is enriched in PDF-positive clock neurons and a third is enriched in PDF-negative clock neurons. Moreover, we characterized 2 novel genes, Fer2 and dnocturnin, one from each subgroup, which highlight subgroup-specific features and play important roles in circadian rhythms. The methodology is a powerful tool not only to dissect the cellular and molecular basis of circadian rhythms but also to molecularly characterize other Drosophila neuronal circuits.
Project description:Gene expression profiling of distinct members of a neuronal circuit has the potential to identify candidate molecules and mechanisms that underlie the formation, organization and function of the circuit. To this end, we report here the application of a novel method to characterize RNAs from small numbers of specific Drosophila brain neurons, which belong to the circadian circuit. We identified three different sets of mRNAs enriched in different subclasses of clock neurons: one is enriched in all clock neurons, a second is enriched in PDF-positive clock neurons and a third is enriched in PDF-negative clock neurons. Moreover, we characterized 2 novel genes, Fer2 and dnocturnin, one from each subgroup, which highlight subgroup-specific features and play important roles in circadian rhythms. The methodology is a powerful tool not only to dissect the cellular and molecular basis of circadian rhythms but also to molecularly characterize other Drosophila neuronal circuits. Experiment Overall Design: Circadican related neuronal celltypes (Tim, Pdf) or general neurons (Elav) were labeled by GFP or YFP using specific Gal4 drivers. Expression of those celltypes were profiled after manual sorting of those GFP or YFP positive cells. 3 biological replicates were collected (except adult small pdf cells).
Project description:To compare circadian gene expression within highly discrete neuronal populations, we separately purified and characterized two adjacent but distinct groups of Drosophila adult circadian neurons: the 8 small and 10 large PDF (pigment-dispersing factor)-expressing ventral lateral neurons (s-LNvs and l-LNvs, respectively). The s-LNvs are the principal circadian pacemaker cells, whereas recent evidence indicates that the l-LNvs are involved in sleep and light-mediated arousal. Although half of the l-LNv-enriched mRNA population including core clock mRNAs is shared between the l-LNvs and s-LNvs, the other half is l-LNv- and s-LNv specific. The distribution of four specific mRNAs is consistent with prior characterization of the four encoded proteins and therefore indicates successful purification of the two neuronal types. Moreover, an octopamine receptor mRNA is selectively enriched in l-LNvs, and only these neurons respond to in vitro application of octopamine. Dissection and purification of l-LNvs from flies collected at different times indicate that these neurons contain cycling clock mRNAs with higher circadian amplitudes as well as at least a 10-fold higher fraction of oscillating mRNAs than all previous analyses of head RNA. Many of these cycling l-LNv mRNAs are well-expressed but do not cycle or cycle much less well elsewhere in heads. The results suggest that RNA cycling is much more prominent in circadian neurons than elsewhere in heads and may be particularly important for the functioning of these neurons.